La logica (matematica) dietro le quinte
Implicazione: ⇒
Consideriamo le proposizioni , e .
Diciamo che implica , e scriviamo per indicare che quando è vera, allora anche è vera.
(Se è vera, è necessariamente vera).
Il simbolo collega una premessa e una conclusione , ed è molto utilizzato nelle dimostrazioni, perchè rappresenta un modo simbolico di mostrare il ragionamento deduttivo.
Scrivere " implica " è equivalente a dire "se allora " o più raramente " se ".
Sembra complicato, vero? No... vediamo qualche esempio di implicazioni.
- Se prendi più di 6 nella verifica, allora passi l'esame.
- La testa ti farà male se continui a sbatterla contro il muro.
Un esempio di implicazione in geometria
Dato un quadrilatero Q, usa l'app di seguito per trovare e verificare le reciproche implicazioni tra le seguenti proposizioni:
a: Q ha un angolo ottuso .
b: Q ha tre angoli acuti.
c: Q non ha angoli retti.
(Trascina i vertici per esplorare quadrilateri di tipo diverso)
Quali sono le implicazioni logiche tra le proposizioni a, b, c?
Le persone false non piacciono a nessuno
Considera questo esempio:
Siamo partiti da una premessa falsa e abbiamo ottenuto una conclusione vera.
Ora considera questo:
Siamo partiti - ancora - da una premessa falsa e abbiamo ottenuto una conclusione falsa.
L'implicazione non vuole premesse false. Se partiamo da una premessa falsa, anche se applichiamo operazioni matematicamente corrette alla premessa, la conclusione che otteniamo può essere sia vera che falsa.
Mostrare che le cose non funzionano
Nell'esempio precedente, avevamo a disposizione le seguenti tre proposizioni relative a un quadrilatero Q:
a: Q ha un angolo ottuso.
b: Q ha tre angoli acuti .
c: Q non ha angoli retti.
Possiamo dire che:
- a non implica b perchè un rombo (che non è un quadrato) ha un angolo ottuso, ma non ha 3 angoli acuti.
- a non implica c perchè un trapezio rettangolo (che non è un rettangolo) ha un angolo ottuso e due angoli retti.
- c non implica b perchè un rombo (che non è un quadrato) non ha angoli retti, ma non ha tre angoli acuti.