Accedi
Cerca
GeoGebra
Home
Risorse
Profilo
Classroom
Scarica le app
2° teorema euclide
Autore:
Giordano Salvatori
Secondo teorema di Euclide, primo e secondo enunciato. Primo Enunciato:
in un triangolo rettangolo il quadrato costruito sull'altezza relativa all'ipotenusa è equivalente al retangolo che ha per lati le proiezioni dei cateti sull'ipotenusa.
Secondo Enunciato:
in un triangolo rettangolo l'altezza relativa all'ipotenusa è media proporzionale tra le proiezioni dei cateti.
Dimostrazione: Partendo da un triangolo ABC poggiato sull'ipotenusa AC, tracciamo dal vertice del triangolo (dall'angolo retto) l'altezza BH relativa all'ipotenusa. Su tale altezza costruiamo un quadrato con vertici HBFG che chiameremo Q1. Proiettiamo l'altezza BH per la lunghezza dell'ipotenusa ed otterremo un rettangolo con vertici AHDE che chiameremo R1. Costruiamo un quadrato con vertici AHIL sulla base AH del triangolo ABH che chiameremo Q2. Per differenza dal rettangolo R1 togliamo il quadrato Q2 ed otteniamo il rettangolo con vertici LIDE che chiameremo R2. Dato che: - per il
primo teorema di Euclide
Q3 è uguale a R2 + Q2 - per il
teorema di pitagora
ho che Q3 è uguale a Q1+Q2 ne risulta che R2+Q2 è uguale a Q1+Q2 Avendo Q2 come termine in comune e identico, per differenza togliendo cioè Q2 da entrambe le parti otteniamo che R2 è eqivalente a Q1 Facendo riferimento alle proprietà delle
proporzioni matematiche
, AH : BH = BH : HC (AH sta a BH come BH sta a HC) che equivale a BHxBH = AHxHC e che equivale a BH2 = AHxHC essendo che BHxBH corrisponde a Q1 e AHxHC è uguale a LIxID e corrispondono entrambi a R2 ne risulta che Q1 è uguale a R2
Nuove risorse
Determinare la pendenza di una retta
Numero di soluzioni di un'equazione lineare
Esplorando la pendenza di una retta
Risolvere un sistema di equazioni: retta e parabola
Converti gradi in radianti e viceversa
Scopri le risorse
Funzione omografica
Verifica se hai capito l'argomento
Definizione
mindmap
Senza titolo
Scopri gli argomenti
Vettori 3D (tridimensionali)
Operazioni aritmetiche
Cono
Numeri naturali
Limiti