INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.5-5.6] MONOTONY AND CONCAVITY

Compiled by Christos Nikolaidis

_		
Ο.	Dractica	auestions
U.	riacuce	uuesuuis

1.	[Maximum mark: 12] [without GDC]
	Differentiate each of the functions below and hence determine whether it is increasing
	or decreasing on its entire domain.

(i)	$f(x) = x^3 + x + 5$	(ii)	$f(x) = 5 - 5x^5$
(iii)	$f(x) = 5 - 3e^{2x}$	(iv)	$f(x) = \frac{2x+1}{3x+5}$

2.

[Max	ximum mark: 12] <i>[without GDC]</i>	
Con	sider the function $f(x) = x^3 + 3x^2 - 9x$ which passes through the origin.	
(a)	Find any stationary points and determine their nature.	[6]
(b)	Find any points of inflexion and justify your answer.	[3]
(c)	Sketch the graph of the function. (Use your GDC to check the result).	[3]

3.

iviaz	imum mark: 12] <i>[without GDC]</i>	
Con	sider the function $f(x) = x^3 + 3x^2 + 3x$	
(a)	Find any stationary points and determine their nature.	[6
(b)	Find any points of inflexion and justify your answer.	[3
(c)	Sketch the graph of the function. (Use your GDC to check the result).	[3

[Ma	aximum mark: 5]	[without GDC]
It is	s given that $f'(x)$	$= (x-1)(x-3)(x-4)^{2}.$
Fir	nd the stationary po	ints of f and determine their nature.
	aximum mark: 4]	
		$= (x-1)(x-3)(x-4)^{2}.$
Fir	nd the points of infle	exion of f ; justify your answer.

6. [Maximum mark: 7] *[without GDC]*

The graph of a function g is given in the diagram below.

The gradient of the curve has its maximum value at point B and its minimum value at point D. The tangent is horizontal at points C and E.

(a) Complete the table below, by stating, for each iterval, whether the first derivative g' is **positive** or **negative**; the second derivative g'' is **positive** or **negative**.

Interval	g'	g''
a < x < b	positive	positive
<i>b</i> < <i>x</i> < c		
c < x < d		
<i>d</i> < <i>x</i> < e		
e < x < f		

[4]

(a) Complete the table below, by stating for each point, whether the first derivative g' is **positive**, **negative** or **zero**, the second derivative g'' is **positive**, **negative** or **zero**.

	Point	g'	g"
В	x = b	positive	zero
С	x = c		
D	x = d		
Е	x = e		

[3]

7.

[Maximum mark: 12] [with GDC]				
$f(x) = ax^3 + bx^2 + cx$				
Find the first and the second derivative of $f(x)$, in terms of a , b , c .	[4]			
The graph				
passes through the point $P(1,4)$				
has a local maximum at P				
has a point of inflexion at $x = 2$.				
Write down three linear equations representing this information.	[3]			
Hence find the values of a , b , c .	[2]			
The function has a local minimum at $x = d$. Find the value of d and justify that it				
is a minimum.	[3]			
	Find the first and the second derivative of $f(x)$, in terms of a , b , c . The graph passes through the point $P(1,4)$ has a local maximum at P has a point of inflexion at $x=2$. Write down three linear equations representing this information. Hence find the values of a , b , c . The function has a local minimum at $x=d$. Find the value of d and justify that it is a minimum.			

8.	[Maximum mark: 12] [without GDC]
	Consider the function $f: x \mapsto x^2 e^x$. Find any max/min points, points of inflection and
	hence sketch the graph of the function.

A. Exam style questions (SHORT)

9. [Maximum mark: 7] *[without GDC]*

The following diagram shows part of the curve of a function f. The points A, B, C, D and E lie on the curve, where B is a minimum point and D is a maximum point.

(a) Complete the following table, noting whether f'(x) is positive, negative or zero at the given points.

	Α	В	Е
f'(x)			

at

(b) Complete the following table, noting whether f''(x) is positive, negative or zero at the given points.

	A	С	E
f''(x)			

[2]

[2]

(c) Complete the following table, noting whether each value is positive, negative or zero.

f(0)	f'(0)	f"(0)

[2]

(d) Write down the number of points of inflexion for this curve.

[1]

10. [Maximum mark: 11] [without GDC]

Consider $f(x) = \frac{1}{3}x^3 + 2x^2 - 5x$. Part of the graph of f is shown below. There is a maximum point at M, and a point of inflexion at N.

- (a) Find f'(x) [2]
- (b) Find the x coordinate of M. [3]
- (c) Find the x coordinate of N. [3]
- (d) The line L is the tangent to the curve of f at (3, 12). Find the equation of L in the form y = ax + b.

[without GDC]

11. [Maximum mark: 8]

(a)	Find the two values of x at which the tangent to the graph of g is horizontal.
(b)	For each of these values, determine whether it is a maximum or a minimum.
[Max	ximum mark: 51
	ximum mark: 5] [with GDC] $f'(x) = -24x^3 + 9x^2 + 3x + 1.$
Let	$f'(x) = -24x^3 + 9x^2 + 3x + 1.$
	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates
Let (a)	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates of these points.
Let	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates
Let (a)	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates of these points.
Let (a)	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates of these points.
Let (a)	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates of these points.
Let (a)	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates of these points.
Let (a)	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates of these points.
Let (a)	$f'(x) = -24x^3 + 9x^2 + 3x + 1$. There are two points of inflexion on the graph of f . Write down the x -coordinates of these points.

13.	[Max	kimum mark: 7] [without GDC]	
	Con	sider the function $f(x) = \frac{3x-2}{2x+5}$.	
	The	graph of this function has a vertical and a horizontal asymptote.	
	(a)	Write down the equations of the asymptotes	[2]
	(b)	Find $f'(x)$, simplifying the answer as much as possible.	[2]
	(c)	Write down the number of stationary points of the graph. Justify your answer.	[2]
	(d)	Write down the number of points of inflexion of the graph.	[1]
14.	[Max	kimum mark: 5] [without GDC]	
	A fu	nction f has its first derivative given by $f'(x) = (x-3)^3$.	
	(a)	Find the second derivative.	[2]
	(b)	Find $f'(3)$ and $f''(3)$.	[1]
	(c)	Explain why the point P on the graph with <i>x</i> -coordinate 3 is not a point of inflexion.	[2]

15. [Maximum mark: 8] *[without GDC]*

The diagram below shows the graph of $f(x) = x^2 e^{-x}$ for $0 \le x \le 6$. There are points of inflexion at A and C and there is a maximum at B.

- (a) Using the product rule for differentiation, find f'(x). [2]
- (b) Find the **exact** value of the *y*-coordinate of B. [2]
- (c) (i) Show that $f''(x) = (x^2 4x + 2)e^{-x}$.

(ii)	Hence , find the exact value of the x -coordinate of C.	[4]

16. [Maximum mark: 6] **[without GDC]**

On the axes below, sketch a curve y = f(x) which satisfies the following conditions.

x	f(x)	f'(x)	f''(x)
$-2 \le x < 0$		negative	positive
0	-1	0	positive
0 < x <1		positive	positive
1	2	positive	0
$1 < x \le 2$		positive	negative

17. [Maximum mark: 6] [without GDC]

Let $g(x) = \frac{\ln x}{x^2}$, for x > 0.

(a) Use the quotient rule to show that $g'(x) = \frac{1 - 2 \ln x}{x^3}$. [3]

(b) The graph of g has a maximum point at A. Find the x-coordinate of A. [3]

18. [Maximum mark: 8] *[without GDC]*

Consider the function $h: x \mapsto \frac{x-2}{(x-1)^2}, x \ne 1$.

A sketch of part of the graph of *h* is given below.

The line (AB) is a vertical asymptote. The point P is a point of inflexion.

- (a) Write down the **equation** of the vertical asymptote. [1]
- (b) Find h'(x) writing your answer in the form $\frac{a-x}{(x-1)^n}$ [4]
- (c) Given that $h''(x) = \frac{2x-8}{(x-1)^4}$, calculate the coordinates of P. [3]

19. [Maximum mark: 8] [without GDC]

The function g(x) is defined for -3 < x < 3. The behaviour of g'(x) and g''(x) is given in the tables below.

х	-3 < x < -2	-2	-2 < x < 1	1	1 < x < 3
g'(x)	negative	0	positive	0	negative
		1	1	1	

x	$-3 < x < -\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2} < x < 3$
g''(x)	positive	0	negative

Use the information above to answer the following. In each case, justify your answer.

- (a) Write down the value of x for which g has a maximum. [1]
- (b) On which intervals is the value of g decreasing? [2]
- (c) Write down the value of x for which the graph of g has a point of inflexion [1]
- (d) Given that g(-3) = 1, sketch the graph of g. On the sketch, clearly indicate the position of the maximum point, the minimum point, and the point of inflexion. [4]

20.		ximum mark: 7]	
		$f(x) = \frac{e^x - 1}{e^x + 1}$	
	(a)	Find $f'(x)$ and deduce the monotony of the function.	[3]
	(b)	Explain why $f^{-1}(x)$ exists and find its expression.	[4]

./lo	vimum mark: 61
	ximum mark: 6] [with GDC]
	ximum mark: 6] [with GDC] $f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.
	$f(x) = (x-1)^2(x-4)^3$. Find the points of inflexion; justify your answer.

23.	[Max	kimum mark: 6]	
	Con	sider $f(x) = x^2 + \frac{p}{x}$, $x \neq 0$, where p is a constant.	
		Find $f'(x)$.	[2]
	(b)	There is a minimum value of $f(x)$ when $x = -2$. Find the value of p .	[4]
24.	[May	kimum mark: 6] <i>[without GDC]</i>	
	_		
	The	function f is defined by $f(x) = \frac{2x}{x^2 + 6}$, for $x \ge b$, where $b \in R$.	
	(a)	Show that $f'(x) = \frac{12 - 2x^2}{(x^2 + 6)^2}$.	[3]
	(b)	Hence find the smallest exact value of b for which the inverse function f^{-1}	
		exists. Justify your answer.	[3]

25.		imum mark: 5] [without GDC]
	If $f($	$(x) = x - 3x^{\frac{2}{3}}, \ x > 0,$
	(a)	find the x -coordinate of the point P where $f'(x) = 0$;
	(b)	determine whether P is a maximum or minimum point.
26.	[Max	imum mark: 6]
26.	_	imum mark: 6] [with / without GDC] the x -coordinate of the point of inflexion on the graph of $y = xe^x$, $-3 < x \le 1$.
26.	_	
26.	_	
26.	_	the x -coordinate of the point of inflexion on the graph of $y = xe^x$, $-3 < x \le 1$.
26.	_	
26.	_	the x -coordinate of the point of inflexion on the graph of $y = xe^x$, $-3 < x \le 1$.
26.	_	the x -coordinate of the point of inflexion on the graph of $y = xe^x$, $-3 < x \le 1$.
26.	_	the x -coordinate of the point of inflexion on the graph of $y=x\mathrm{e}^x$, $-3 < x \le 1$.
26.	_	the x -coordinate of the point of inflexion on the graph of $y=x\mathrm{e}^x$, $-3 < x \le 1$.
26.	_	the x -coordinate of the point of inflexion on the graph of $y=xe^x$, $-3 < x \le 1$.
26.	_	the x -coordinate of the point of inflexion on the graph of $y=xe^x$, $-3 < x \le 1$.
26.	_	the x -coordinate of the point of inflexion on the graph of $y = xe^x$, $-3 < x \le 1$.
26.	_	the x -coordinate of the point of inflexion on the graph of $y=xe^x$, $-3 < x \le 1$.

27*.	[Max	rimum mark: 7] [without GDC]	
	Let	$f: x \mapsto e^{\sin x}$.	
	(a)	Find $f'(x)$.	[2]
	(b)	Show that an equation that would allow you to find the values of x at the points of	
		inflexion is $\sin x = \frac{\sqrt{5} - 1}{2}$.	[5]

28.	[Maximum mark: 7] [with GDC]
	Consider the curve with equation $f(x) = e^{-2x^2}$ for $x < 0$.
	Find the cordinates of the point of inflexion and justify that it is a point of inflexion.
29.	[Maximum mark: 6] [with / without GDC]
	The function f is given by $f(x) = \frac{x^5 + 2}{x}$, $x \ne 0$. There is a point of inflexion on the
	graph of f at the point P. Find the coordinates of P.

30.	[Maximum mark: 6] [without GDC]
	The curve $y = \frac{x^3}{3} - x^2 - 3x + 4$ has a local maximum point at P and a local minimum point
	at Q. Determine the equation of the straight line passing through P and Q, in the form
	$ax + by + c = 0$, where $a, b, c \in R$.

31.	[Maximum mark: 6]	[without GDC]
	A function f is define	d by $f(x) = ax^3 + bx^2 + 30x + c$ where a , b and c are constants. The
	graph has a maximum	at (1,7) and a point of inflexion when $x=3$. Find the value of a , of b
	and of c .	

32.	[Max	[Maximum mark: 8] [without GDC]					
	A cu	bic function has a maximum at $A(0,5)$ and a point of inflexion at $B(1,1)$. Find					
	(a)	an expression of the cubic function.	[6]				
	(b)	the coordinates of the minimum point; justify that it is a minimum.	[2]				

B. Exam style questions (LONG)

33. [Maximum mark: 12] [with / without GDC]

The function f is given by $f(x) = \frac{\ln 2x}{x}$, x > 0

(a) (i) Show that $f'(x) = \frac{1 - \ln 2x}{x^2}$. Hence

(ii) prove that the graph of f can have only one local max or min point;

(iii) find the coordinates of the maximum point on the graph of f. [6]

(b) By showing that the second derivative $f''(x) = \frac{2 \ln 2x - 3}{x^3}$ or otherwise,

find the coordinates of the point of inflexion on the graph of f .	[6]

.....

.....

34.	4. [Maximum mark: 18] <i>[without GDC]</i>					
	The	function f is defined by $f(x) = xe^{2x}$.				
	(a)	By considering the first and the second derivatives of f , show that there is one				
		minimum point P on the graph of f , and find the coordinates of P.	[7]			
	(b)	Show that f has a point of inflexion Q at $x = -1$.	[5]			
	(c)	Determine the intervals on the domain of f where f is				
		(i) concave up; (ii) concave down.	[2]			
	(d)	Sketch f , clearly showing any intercepts, asymptotes and the points P and Q.	[4]			

35. [Maximum mark: 13] [with / without GDC]

The following diagram shows the graph of $f(x) = e^{-x^2}$.

The points A, B, C, D and E lie on the graph of f. Two of these are points of inflexion.

(a) Identify the **two** points of inflexion.

[2]

(b) (i) Find f'(x).

(c)

(ii) Show that $f''(x) = (4x^2 - 2)e^{-x^2}$.

Find the x-coordinate of each point of inflexion.

[5] [4]

[2]

(d) Use the second derivative to show that one of these points is a point of inflexion.

.....

36.

[Maximum mark: 10] [with GDC]							
Let t	Let the function f be defined by $f(x) = \frac{2}{1+x^3}$, $x \neq -1$.						
(a)	(i) (ii) (iii)	Write down the equation of the vertical asymptote of the graph of f . Write down the equation of the horizontal asymptote of the graph of f . Sketch the graph of f in the domain $-3 \le x \le 3$.	[4]				
(b)	(i) Using the fact that $f'(x) = \frac{-6x^2}{(1+x^3)^2}$, show that $f''(x) = \frac{12x(2x^3-1)}{(1+x^3)^3}$.						
	(ii)	Find the $\it x$ -coordinates of the points of inflexion of the graph of $\it f$.	[6]				

37. [Maximum mark: 14] <i>[with GDC]</i>							
	The function f is defined as $f(x) = (2x+1)e^{-x}$, $0 \le x \le 3$. The point P(0, 1) lies on t						
	grap	n of $f(x)$, and there is a maximum point at Q.					
	(a)	Sketch the graph of $y = f(x)$, labelling the points P and Q.	[3]				
	(b)	(i) Show that $f'(x) = (1-2x)e^{-x}$.					
		(ii) Find the exact coordinates of Q.	[7]				
	(c)	The equation $f(x) = k$, where $k \in \mathbb{R}$, has two solutions. Write down the range of					
		values of k .	[2]				
	(d)	Given that $f''(x) = e^{-x}(-3+2x)$, show that the curve of f has only one point of					
		inflexion.	[2]				

38. [Maximum mark: 9] [without GDC]

Consider the function f given by $f(x) = \frac{2x^2 - 13x + 20}{(x-1)^2}$, $x \ne 1$.

A part of the graph of f is given below (vertical and horizontal asymptotes are shown)

- (a) Write down the **equation** of the vertical asymptote.
- (b) It is given that f(100) = 1.91, f(-100) = 2.09, f(1000) = 1.99, f(-1000) = 2.01Write down the **equation** of the horizontal asymptote. [1]

[1]

(c) Show that $f'(x) = \frac{9x - 27}{(x - 1)^3}, x \ne 1.$ [3]

The second derivative is given by $f''(x) = \frac{72 - 18x}{(x - 1)^4}$, $x \ne 1$.

- (d) Using values of f'(x) and f''(x) explain why a minimum must occur at x = 3. [2]
- (e) There is a point of inflexion on the graph. Write down the coordinates of this point. [2]

.....

.....

.....

39. [Maximum mark: 14] *[with GDC]*

Consider $f(x) = x \ln(4-x^2)$, for -2 < x < 2. The graph of f is given below.

- (a) Let P and Q be the stationary points on the curve of f.
 - (i) Find the x-coordinate of P and of Q.
 - (ii) Write down all values of k for which f(x) = k has exactly two solutions. [5]

Let $g(x) = x^3 \ln(4-x^2)$, for -2 < x < 2.

- (b) Show that $g'(x) = \frac{-2x^4}{4-x^2} + 3x^2 \ln(4-x^2)$. [4]
- (c) Sketch the graph of g'. [2]
- (d) Write down all values of w for which g'(x) = w has exactly two solutions. [3]

.....

.....

40.

[Ma	[Maximum mark: 17] [with / without GDC]				
The	The function f is defined by $f(x) = \frac{\ln x}{x^3}$, $x \ge 1$.				
(a)	a) Find $f'(x)$ and $f''(x)$, simplifying your answers.				
(b) (i) Find the exact value of the x -coordinate of the maximum point and					
		that this is a maximum.			
	(ii)	Solve $f''(x) = 0$, and show that at this value of x , there is a point of			
		inflexion on the graph of f .			
	(iii)	Sketch the graph of $\ f$, indicating the maximum point and the point of			
		inflexion.	[11]		
	•••••				
	•••••				
	•••••				

41.	[Max	ximum mark: 14] <i>[with / without GDC]</i>	
	Let	$f(x) = x^3 - 4x + 1.$	
	(a)	Find $f'(x)$	[2]
	(b)	The tangent to the curve of f at the point P(1, -2) is parallel to the tangent at a	
		point Q. Find the coordinates of Q.	[4]
	(c)	The graph of f is decreasing for $p < x < q$. Find the value of p and of q .	[3]
	(d)	Write down the range of values for the gradient of f .	[2]
	(e)	Find the coordinates of the point of inflexion of the graph of f .	[3]

42. [Maximum mark: 15] [without GDC]

Let $f(x) = 3 + \frac{20}{x^2 - 4}$, for $x \neq \pm 2$. The graph of f is given below.

diagram not to scale

The y-intercept is at the point A.

- (a) (i) Find the coordinates of A (ii) Show that f'(x) = 0 at A. [6]
- (b) The second derivative $f''(x) = \frac{40(3x^2+4)}{(x^2-4)^3}$. Use this to
 - (i) justify that the graph of f has a local maximum at A;
 - (ii) explain why the graph of f does **not** have a point of inflexion. [6]
- (c) Describe the behaviour of the graph of f for large |x|. [1]
- (d) Write down the range of f. [2]

43. [Maximum mark: 14] [with GDC]

Let
$$f(x) = e^x (1-x^2)$$
.

(a) Show that
$$f'(x) = e^x (1 - 2x - x^2)$$
. [3]

Part of the graph of y = f(x), for $-6 \le x \le 2$, is shown below. The x-coordinates of the local minimum and maximum points are r and s respectively.

- (b) Write down the **equation** of the horizontal asymptote. [1]
- (c) Write down the value of r and of s. [4]
- (d) Show that the normal L to the curve of f at P(0, 1) has equation x + y = 1. [4]
- (e) Find the coordinates of the points where the curve and the line L intersect. [2]

.....

44. [Maximum mark: 12] [without GDC]

Let $f(x) = \frac{1}{3}x^3 - x^2 - 3x$. Part of the graph of f is shown below.

There is a maximum point at A and a minimum point at B(3, -9).

(a) Find the coordinates of A.

[6]

- (b) Write down the coordinates of
 - (i) the image of B after reflection in the y-axis;
 - (ii) the image of B after translation by the vector $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$;
 - (iii) the image of B after reflection in the x-axis followed by a horizontal stretch with scale factor $\frac{1}{2}$.

[6]

45 .	[Maximum	mark:	121	[without	GDC 1

Let
$$f(x) = \frac{\cos x}{\sin x}$$
, for $\sin x \neq 0$.

(a) Use the quotient rule to show that
$$f'(x) = \frac{-1}{\sin^2 x}$$
. [4]

(b) Find
$$f''(x)$$
. [3]

In the following table, $\ f'\left(\frac{\pi}{2}\right)=p$ and $\ f'\left(\frac{\pi}{2}\right)=q$. The table also gives approximate

values of f'(x) and f''(x) near $x = \frac{\pi}{2}$.

x	$\frac{\pi}{2} - 0.1$	$\frac{\pi}{2}$	$\frac{\pi}{2} + 0.1$
f'(x)	-1.01	p	-1.01
f''(x)	0.203	q	-0.203

- (c) Find the value of p and of q. [3]
- (d) Use information from the table to explain why there is a point of inflexion on the graph of f where $x = \frac{\pi}{2}$.

[2]

[Maximum mark: 12] 46. [without GDC]

(c)

The diagram shows the graph of $y = e^x(\cos x + \sin x)$, $-2 \le x \le 3$. The graph has a maximum turning point at C(a, b) and a point of inflexion at D.

- Find $\frac{\mathrm{d}y}{\mathrm{d}x}$. (a) [3]
- Find the **exact** value of a and of b. (b) [4]
- Show that at D, $y = \sqrt{2}e^{\frac{\pi}{4}}$. [5]

47. [Maximum mark: 12] [without GDC]

Part of the graph of $f(x) = \frac{1}{1+x^2}$ is shown below.

- (a) Write down the equation of the horizontal asymptote of the graph of f. [1]
- (b) Find f'(x). [3]
- (c) Show that the second derivative is given by $f''(x) = \frac{6x^2 2}{(1 + x^2)^3}$. [4]
- (d) Let A be the point on the curve of f where the gradient of the tangent is a maximum. Find the x-coordinate of A. [4]

.....

48.

[Max	[Maximum mark: 11] [with GDC]					
Con	sider 1	the function $f(x) = e^{(2x-1)} + \frac{5}{2x-1}$, $x \neq \frac{1}{2}$.				
(a)	Sket	cch the curve of f for $-2 \le x \le 2$, including any asymptotes.	[3]			
(b)	Writ	e down the equation of the vertical asymptote of f .	[1]			
(c)	Find	f'(x).	[4]			
(d)	(i)	Write down the value of x at the minimum point on the curve of f .				
	(ii)	The equation $f(x) = k$ has no solutions for $p \le k < q$. Write down the value				
		of p and of q .	[3]			

49. [Maximum mark: 12] [without GDC]

The function f is defined as $f(x) = e^x \sin x$, where x is in radians. Part of the curve of f is shown below.

There is a point of inflexion at A, and a local maximum point at B. The curve of f intersects the x-axis at the point C.

- (a) Write down the x-coordinate of the point C. [2]
- (b) (i) Find f'(x).
 - (ii) Write down the value of f'(x) at the point B. [4]
- (c) Show that $f''(x) = 2e^x \cos x$. [2]
- (d) (i) Write down the value of f''(x) at A, the point of inflexion.
 - (ii) Hence, calculate the coordinates of A.

[4]

50**.	[Max	imum mark: 15] <i>[with GDC]</i>					
	The 1	The function f is defined by $f(x) = \frac{x^2 - x + 1}{x^2 + x + 1}$					
	(a)	(i) Find an expression for $f'(x)$, simplifying your answer.					
		(ii) The tangents to the curve of $f(x)$ at points A and B are parallel to the					
		x -axis. Find the coordinates of A and of B.	[5]				
	(b)	(i) Sketch the graph of $y = f'(x)$.					
		(ii) Find the x -coordinates of the three points of inflexion on the graph of f .	[5]				
	(c)	Find the range of (i) f ; (ii) the composite function $f\circ f$.	[5]				

51**. [Maximum mark: 14] *[without GDC]*

The diagram shows part of the graph of the curve with equation $y = e^{2x} \cos x$.

(a) Show that
$$\frac{dy}{dx} = e^{2x}(2\cos x - \sin x)$$
 [2]

(b) Find
$$\frac{d^2y}{dx^2}$$
. [4]

There is an inflexion point at P(a,b).

(c) Use the results from parts (a) and (b) to prove that:

(i)	$\tan a = \frac{3}{4};$	(ii)	the gradient of the curve at P is e^{2a} .	[8]
-----	-------------------------	------	--	-----

 • • •
•••
• • •
• • •
 • • •
• • •
 • • •
 • • •
 • • •
 • • •
 • • •

52*.	52*. [Maximum mark: 13] [with GDC]							
	Let f	et $f(x) = x \left(\sqrt[3]{(x^2 - 1)^2} \right)$, $-1.4 \le x \le 1.4$						
	(a)							
		On your graph indicate the approximate position of						
		(i) each zero; (ii) each maximum point; (iii) each minimum point.	[4]					
	(b)	(i) Find $f'(x)$ clearly stating its domain. (ii) Find the x -coordinates of the maximum and minimum points of $f(x)$, for $-1 < x < 1$.	[7]					
	(c) Find the x -coordinate of the point of inflexion of $f(x)$, where $x>0$, giving							
		your answer correct to four decimal places.	[2]					