Grades 5 - 8 Duration: 20 min	Pressure of Faces	
Tools: one 16 pcs Set / 1 to 4 students, Ruler, Precision scale Individual / Pair / Group work Keywords: Area Precision scale	PHYSICS	LOGIFACES Erasmus+ TEACHER Logifaces
Reywords. Area, r recision scale		2019-1-HU01-KA201-0612722019-1

DESCRIPTION

Based on your previous measurements in the exercise <u>Density, Volume</u>, the students calculate the pressure acting on each block side.

SOLUTIONS / EXAMPLES

1. Calculate the force exerted by the object.

Measure the mass and then convert the mass to force. (100 g = 1 N)

Block	Mass (g)	Force (N)
111	10	0.1
222	20	0.2
333	29	0.29
112	14	0.14
122	17	0.17
223	23	0.23
233	27	0.27
113	17	0.17
133	23	0.23
123, 132	20	0.2

2. The students calculate the areas of the faces of the blocks (see exercise <u>408 - Area Formulas for Polygons</u> for the formulas and <u>Parameters of the logifaces blocks</u> for the results).

3. Students calculate the pressure *p* using the formula $p = \frac{F}{A}$, where *F* is force and *A* is the area of the surface that is in contact with the desk. Remember to convert square centimetres to square metres. Some example results are listed in the table below.

Block	Face	Force (N)	Area of the face	Pressure (Pa)
111	base triangle	0.1	10.83 cm ² = 0.1083 m ²	0.923
111	vertical face	0.1	6.25 cm ² = 0.0625 m ²	0.16
133	base triangle	0.23	10.83 cm ² = 0.1083 m ²	2.124
133	top triangle	0.23	12.5 cm ² = 0.125 m ²	1.84
133	rectangular face	0.23	$18.75 \mathrm{cm}^2$ = 0.1875 m ²	1.227

4. Note that the smaller the surface, the greater the pressure when the force is the same.

PRIOR KNOWLEDGE

Mass, Force, Area, Pressure

RECOMMENDATIONS / COMMENTS

Exercises <u>408 - Area Formulas for Polygons</u> and <u>517 - Heights and Volumes</u> are recommended before this exercise to familiarise the students with the formulas used to calculate the areas of the faces and the volumes of the blocks.

Exercise <u>Density</u>, <u>Volume</u> is recommended before this exercise as a related exercise in Physics.