Grades 5-8 (A), 9-12 (A)
Duration: 20 min
Tools: one Logifaces Set / class
Pair / Class work
Keywords: Volume, Truncated prism, Proof

518 - Proof of the Volume Formula

MATHS / 3D GEOMETRY
 Erasmus+

DESCRIPTION

Students prove the following formula for the volume of the truncated prism with triangular base:
$\frac{1}{3} A\left(h_{1}+h_{2}+h_{3}\right)$, where h_{1}, h_{2} and h_{3} are the heights of the prism and A is the area of the base triangle.
Observe that the proof works for an arbitrary base triangle, it is not necessary to have a regular base triangle.
SOLUTIONS / EXAMPLES

Let the three heights of the truncated prism be in the following order:
$h_{1} \geq h_{2} \geq h_{3}$.
If the truncated prism is cut from the regular prism with height h_{1}, a pyramid $A B C D E$ is obtained with edge lengths $|C E|=x=h_{1}-h_{3}$ and $|B D|=y=h_{1}-h_{3}$ (see the figure).

The volume $V_{t p}$ of the truncated prism with heights h_{1}, h_{2} and h_{3} will be calculated as the volume $V_{r p}$ of the regular prism of height h_{1} minus the volume $V_{p y r}$ of the pyramid $A B C D E$.

The volume of the regular pism: $V_{r p}=A \times h_{1}$, where $A=\frac{a \times h}{2}$ is the area of the base triangle $A B C$ with edge $B C=a$ and height h (see the figure for the notations).

The base of the pyramid $A B C D E$ is the trapezium $B C E D$ with area $A_{t r}=\frac{(x+y)}{2} \times a$. Therefore the volume of the pyramid $A B C D E$ is $V_{p y r}=\frac{A_{t r} \times h}{3}=\frac{1}{3} \times \frac{(x+y)}{2} \times a \times h=\frac{1}{3} \times(x+y) \times \frac{a \times h}{2}=\frac{1}{3}(x+y) A$

Hence the volume of the truncated prism is:

$$
V_{t p}=V_{r p}-V_{p y r}=A \times h_{1}-\frac{1}{3} A\left(h_{1}-h_{3}+h_{1}-h_{2}\right)=A \times \frac{3 h_{1}-\left(2 h_{1}-h_{2}-h_{3}\right)}{3}=\frac{1}{3} A\left(h_{1}+h_{2}+h_{3}\right)
$$

Notes on the proof:
Observe that the proof works even if there are vertical edges of the truncated prism of the same length.
The pyramid is a special case of a truncated prism with $h_{3}=0$. The formula is valid even in this case.
PRIOR KNOWLEDGE
Volume, Area, Volume of prisms and pyramids
RECOMMENDATIONS / COMMENTS
We recommend exercise 517 - Heights and Volumes to calculate the volume of the blocks using this formula.

