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THE MATHEMATICAL GAZE I'E 

Five space-filling polyhedra 
GUY INCHBALD 

Introduction 
Solid shapes which pack together to fill space cover a large and varied 

range. I recently found five such polyhedra which I have not seen described 
elsewhere. The names which I have used for them here are rather ferocious 
I am afraid, but that just happens to be the way the names of polyhedra 
work. 

Nets and coordinates for the polyhedra are given in Appendices A and B 
respectively. 

The bisymmetric hendecahedra 
A polyhedron with eleven faces is called a hendecahedron, from the 

Greek for eleven. The one shown in Figure 1 has two planes of symmetry, 
i.e. it is bisymmetric. This hendecahedron also has eleven vertices; 
polyhedra with the same number of faces as vertices are not very common. 
It has 2 large rhombic faces, a small rhombic face (which in the proportions 
used here is square), 4 congruent isosceles triangular faces which meet 
along edges at right angles, and 4 congruent kite-shaped faces. (See 
Appendix B for coordinates.) 

TOP 

FRONT SIDE BACK 

FIGURE 1 The bisymmetric hendecahedron 

Figures 2 and 3 shows how four hendecahedra together form a kind of 
hexagonal boat shape which will stack in interlocking layers. This boat 
shape is also a 'translation unit' - it can be regularly stacked in a lattice to 
fill space, without any rotation or reflection. This lattice is similar to the 
body-centred cubic, but scaled vertically by a factor which is here one-half 
(but see below). In Figure 4 the way the hendecahedra themselves stack 
together to form a space-filling 'honeycomb' can be seen. 
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FIVE SPACE-FILLING POLYHEDRA 

FIGURE 2 

The hendecahedra form 
interlocking hexagonal 'boat' 

shapes. 

FIGURE 3 

One layer (dashed) over another, 
showing the centre of each translation 

unit 

FIGURE 4 

A general stack 

The particular polyhedron described here has an arbitrary height (chosen 
for convenience of its coordinates): it can be distorted vertically by 
stretching to give an infinite series of shapes which are all space-fillers. In 
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THE MATHEMATICAL GAZE'I I'E 

Figure 4, vertical lines can be seen running through the stack. Figure 2 
shows how these lines are made from the edges where two triangular faces 
meet. In Figure 3, the lines are viewed end-on and appear as the comers 
where four hendecahedra from each layer meet. It is obvious from this that 
the angle between two triangular faces must be a right angle, but what 
should the other angles seen in Figure 3 be? These other angles can be 
varied by rotating the triangular faces together about their vertical edges, 
whilst maintaining the right angles and the overall symmetry of the shapes, 
up to the points at which faces merge or disappear. This rotation generates 
space-filling hendecahedra varying continuously from ones with broad front 
rhombs and blunt backs to ones with narrow front rhombs and sharper 
backs. The two distortions together yield a doubly-varying range of space- 
fillers. 

By cutting a hendecahedron in half horizontally and inserting a 
(pentagonal) prismatic centre section, an elongated bisymmetric 
hendecahedron is formed (Figure 5). The square face has become 
hexagonal, and the triangles are now trapezia.* The new solid has fourteen 
vertices with coordinates obtained from the original solid as described in 
Appendix B. 

FIGURE 5 
Two views of the * 

elongated bisymmetric 
: 

. . 
hendecahedron 

The shape fills space in a similar way to the unstretched variant. It may 
be distorted vertically in two independent zones: one being the prismatic 
centre zone and the other the tapering top and bottom ends corresponding to 
an unelongated shape. Together with rotation of the trapezoidal faces, this 
yields a threefold range of distortions which still fill space. 

The sphenoid hendecahedra 
'Sphenoid' means wedge- 

shaped, which is an apt description 
for the hendecahedron shown in 
Figure 6. This also has eleven 
vertices, but it has only one plane 
of symmetry: top and bottom halves 
have reflective symmetry, but left 
and right halves are different, as 
can be seen in the end views. The 
sphenoid hendecahedron has three 
sizes of kite-shaped face and two 
types of isosceles triangle, all 

SPHENOID END FRONT BLUNT END 

TOP 

BACK 

FIGURE 6 
The sphenoid hendecahedron 

* The term trapezium has two quite different interpretations - I use the term to describe a 
quadrilateral with one pair of parallel sides. 
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FIVE SPACE-FILLING POLYHEDRA 

coming in pairs. In the proportions used here, the rhombic face is square. 
(See Appendix B for coodinates.) Unexpectedly the numbers of 3- and 4- 
sided faces are the same as for the bisymmetric variant, and indeed both 
hendecahedra have the same topology - they can be simply distorted into 
one another. 

Figure 7 shows how six units pack like flower petals to form a 'floret'. 
A second floret fits up to it from below and is the other way up. The two 
florets form a translation unit which packs in a simple hexagonal lattice, 
here with a height equal to the unit length. 

FIGURE 7 

Six hendecahedra 
form a 'floret'. 
These stack in 

layers, alternate 
ways up. 

Florets will stack in layers, alternate ways up, to form faceted columns. 
In Figure 8 one floret is laid upon another, and in Figure 9 it can be seen 
how florets also fit together side by side to form a layer. The layer is not 
quite symmetrical, alternate layers being right- and left-handed about the 
junction of three florets. Perhaps a little harder to visualise is the way the 
whole structure of layers and columns interlocks with no gaps, as illustrated 
in Figure 10. 

FIGURE 8 One floret (dashed) 
on top of another 

FIGURE 9 A layer of florets 
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THE MATHEMATICAL GAZE I'E 

FIGURE 10 

The florets form columns 
which pack together. 

A new polyhedron can also be made by elongation (Figure 11): in the 
elongated sphenoid hendecahedron, the square face again becomes a 
hexagon and the triangles become trapezia. It also has fourteen vertices, 
with coordinates obtained from the original solid as described in Appendix 
B, and fills space in a similar way to its unstretched cousin. 

FIGURE 11 
Two views of the 

elongated sphenoid 
hendecahedron 

The two sphenoid shapes can be distorted vertically in the same way as 
the bisymmetric ones, but have no analogue of the rotational distortion. 

The dodecahemioctahedron 

There are a number of solids with faces which pass through their centre, 
so that the face has no inside or outside but can be seen from both sides in 
different places. These central faces are typically parallel to the faces of 
some normal convex polyhedron, but number half as many. Figure 12 
shows the 4 hexagonal faces corresponding to half an octahedron which 
make this solid 'hemi-octa' (though parts of the hexagons cannot be seen 
from either side). Neither the hexagons nor the octahedron are regular, the 
octahedron being slightly flattened or 'oblate'. The solid also 

FIGURE 12 

The dodecahemioctahedron. 
Two hexagonal faces are shown 

shaded. 
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FIVE SPACE-FILLING POLYHEDRA 

has 4 rhombic faces and 8 (isosceles) triangular ones, making in all 12 
ordinary faces. Hence the name dodecahemioctahedron. 

Figures 13 and 14 illustrate two other ways of deriving its shape: Figure 
13 as four oblate octahedra joined face to face around a central vertex, and 
Figure 14 as a cube cut into six square pyramids meeting at the centre, with 
two opposing pyramids removed and four new pyramids stuck onto the 
square bases of the remaining ones. It can also be thought of as a rhombic 
dodecahedron with two oblate octahedra removed leaving dimples behind. 

FIGURE 13 
As four 'oblate' octahedra 

FIGURE 14 
As a cube with two square pyramids 

removed and four more added 

The comer of one dodecahemioctahedron exactly fits the dimple of 
another (Figure 15). A series of units can be fitted together in two basic 
ways, as in Figure 16. In various combinations, these give rise to several 
different packings which fill space. These packings are not true lattices, 
since they have 'false' edges, where the edge of one or more units lies 
across the face of another. 

FIGURE 15 
The comer of one 

dodecahemioctahedron fits 
into the dimple of another. 

FIGURE 16 
The two basic ways of fitting units 

together. 

The most regular packing I have found is shown in Figure 17. The units 
form layers, each of which has alternate rows of peaks and dimples. The 
packing does not have full cubic symmetry, since the rows of peaks and 
dimples give each layer a directional 'grain'. But there is no distinction 
between the three main axes. Another packing, shown in Figure 18, forms 
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THE MATHEMATICAL GAZETTI'E 

distinct layers of peaks alternating with layers of dimples. This pattern is 
only seen in one plane, so the packing has a definite way up or orientation. 

The dodecahemioctahedron is pristine, which means it cannot be 
distorted in any way and still fill space. 

FIGURE 17 
The most regular 

packing? 

FIGURE 18 
A different packing 
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FIVE SPACE-FILLING POLYHEDRA 

Appendix A: Nets 

The elongated hendecahedra 
have slightly different 
z scalings from the given 
coordinates, but this should 
not matter for most purposes. 

Elongated bisymmetric hendecahedron 
j 

Elongated sphenoid hendecahedron 

Dodecahemioctahedron Sphenoid hendecahedron 

Nets for making up 
A set of nets is available, especially designed for easy assembly. They 

come on thin card, suitable for making up directly or for photocopying 
(though photocopies can be too distorted to make up accurately). Please 
send ?1.50 per set, or ?8.00 for 10 sets, to: 
Stardust, Park View, Queenhill, Upton-upon-Severn, Worcester WR8 ORE 
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Appendix B: Coordinates 

Bisymmetric hendecahedron 

A: 

B: 
C: 

D: 
E: 

F: 
G: 
H: 
J: 

K: 

x 

0 

2 
0 

-2 
0 

1 

-1 

2 
0 

-2 

y 
0 
1 

-I 

1 

2 
-1 
-1 

-1 
I 

2 

1 
1 

1 

0 
0 
0 

-1 

-I -1 
L: 0 0 -2 

D 
A 

B 

y 

G 

J 

L 

For an elongated version add ̂  to the z ordinates of points A, B, C, D, E, F and 
G and subtract ? from the z ordinates of points E, F, G, H, J, K and L, thus creating 
three additional vertices. 

Sphenoid hendecahedron 

A 
X y 

A: (9- \3) (1 +\3) 1 
B: 1 
C: 

D: 

D E: 
F: 
G: 
H: 
J: 

L 

2 
5 

9 
4 

2 
0 
2 
9 
4 

\3 
\ 3 

-x3 

, 3 
\ 3 h3 

K: 0 

0 

0 
1 

0 
l 

1 
-? 

0 - I 

L: (9- \3) 4(1 +\3) -1 

For an elongated version add 2 to the z ordinates of points A, B, C, D, E, F and 
G and subtract ? from the z ordinates of points B, D, F, H, J, K and L, thus creating 
three additional vertices. 

G 
zi 

K 
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FIVE SPACE-FILLING POLYHEDRA 475 

Dodecahemioctahedron 

x y z 

A: 0 0 2 A 
B: 1 1 1 
C: 1 -1 1 
D: -1 -1 1 
E: -1 1 1 
F: 0 2 0 
G: 0 0 0 
H: 0 -2 0 H 

J: 1 1 -1 
K: 1 -1 -1 
L: -1 -1 -1 

M: -1 1 -1 
N: 0 0 -2 N 

GUY INCHBALD 

Park View, Queenhill, Upton-upon-Severn, Worcester WR8 ORE 

Juries do not apply mathematical formulae 
Evidence of the Bayes Theorem or any similar statistical method of analysis in a 

criminal trial plunged the jury into inappropriate and unnecessary realms of theory 
and complexity deflecting them from their proper task. 

At trial, the defence were permitted to lead evidence of the Bayes Theorem in 
connection with the statistical evaluation of the DNA profile. 

The Bayes Theorem might be an appropriate and useful tool for statisticians, but 
it was not appropriate for use in jury trials or as a means to assist the jury in their 
task. In the first place, the theorem's methodology required that items of evidence be 
assessed separately according to their bearing on the guilt of the accused, before 
being combined in the overall formula. 

That in their Lordships' view was too rigid an approach to evidence of the nature 
which a jury characteristically had to assess. 

More fundamentally, the attempt to determine guilt or innocence on the basis of 
a mathematical formula, applied to each separate piece of evidence, was simply 
inappropriate to the jury's task. Jurors evaluated evidence and reached conclusions 
not by means of a formula, mathematical or otherwise, but by the joint application of 
their individual common sense and knowledge of the world to the evidence before 
them. 

It was common for juries to evaluate scientific evidence but their Lordships had 
never heard it suggested that a jury should consider the relationship between such 
scientific evidence and other evidence by reference to probability formulae. 

From The Times 9 May 1996, Nick Lord, Tonbridge School. 
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