









To calculate the angles, let G_1 and G_2 be points on the line A_1E_1 and A_2E_2 , respectively, such that B_1G_1 and B_2G_2 are parallel to the plane of the base triangle.

The triangles $A_1B_1G_1$ and $A_2B_2G_2$ are right-angled triangles with angles $\angle A_1B_1G_1 = \alpha$ and $\angle A_2B_2G_2 = \beta$, thus by definition, $cos(\alpha) = \frac{|G_1B_1|}{|A_1B_1|}$ and $cos(\beta) = \frac{|G_2B_2|}{|A_2B_2|}$ (where the notation |AB| is used for the length of the AB line segment).

As seen in the diagram B_1G_1 is the altitude of the base triangle (a_b) and A_1B_1 is the altitude of the top triangle (a_t) . B_2G_2 is the length of the base triangle's edge (a) and A_2B_2 is the top triangle's not horizontal edge (b). So $cos(\alpha)$ is the ratio of the altitudes of the base (a_b) and top triangles (a_t) , and $cos(\beta)$ is the ratio of the length

of the base triangle's edge (a) and the top triangle's not horizontal edge (b): $cos(\alpha) = \frac{a_b}{a_t}$ and $cos(\beta) = \frac{a}{b}$. Based on this formula, the angles can be calculated:

Block	a _b	a _t	α	а	b	β
112	$2\sqrt{3}$	$\sqrt{13}$	$\alpha \approx 16^{\circ}$	4	$\sqrt{17}$	$\beta \approx 14^{\circ}$
113	$2\sqrt{3}$	4	$\alpha = 30^{\circ}$	4	$\sqrt{20}$	$\beta \approx 27^{\circ}$
122	$2\sqrt{3}$	$\sqrt{13}$	$\alpha \approx 16^{\circ}$	4	$\sqrt{17}$	$\beta \approx 14^{\circ}$
133	$2\sqrt{3}$	4	$\alpha = 30^{\circ}$	4	$\sqrt{20}$	$\beta \approx 27^{\circ}$
223	$2\sqrt{3}$	$\sqrt{13}$	$\alpha \approx 16^{\circ}$	4	$\sqrt{17}$	$\beta \approx 14^{\circ}$
233	$2\sqrt{3}$	$\sqrt{13}$	$\alpha \approx 16^{\circ}$	4	$\sqrt{17}$	$\beta \approx 14^{\circ}$

PRIOR KNOWLEDGE

Calculation of altitude of triangles, Trigonometric ratios (specifically cosine), Measurements of angles

RECOMMENDATIONS / COMMENTS

Exercises <u>537 - Ratio of Heights</u> and <u>538 - Ratio of Areas</u> are recommended to calculate the angle α in a different approach.

Exercise <u>539 - Angle of Planes</u> is recommended to calculate the angle between the planes of the base and top triangles in blocks 123 and 132.