Name: Date: Tools:	ogifaces Set / group	532 - Rotating Blocks in GeoGebra MATHS / TRANSFORMATIONS		LOGIFACES METHODOLOGY Erasmus+ STUDENT Logifaces
DESCRIPTION Students' task is to start with a Logifaces block of truncated prism shape drawn in GeoGebra and move it by transformations to another given target position. See exercises 526 - Calculate the Coordinates for the particular coordinates and 527 -Coordinates in GeoGebra for the drawings in GeoGebra. This table shows the coordinates of the top vertices when the base vertices have the coordinates $(0,0,0),(4,0,0),(2,2 \sqrt{3}, 0)$ in each case.				
Block				
112	$(0,0,1),(4,0,1),(2,2 \sqrt{3}, 2)$	$(0,0,1),(4,0,2),(2,2 \sqrt{3}, 1)$		2), $(4,0,1),(2,2 \sqrt{3}, 1)$
122	$(0,0,1),(4,0,2),(2,2 \sqrt{3}, 2)$	$(0,0,2),(4,0,2),(2,2 \sqrt{3}, 1)$		$2),(4,0,1),(2,2 \sqrt{3}, 2)$
223	$(0,0,2),(4,0,2),(2,2 \sqrt{3}, 3)$	$(0,0,2),(4,0,3),(2,2 \sqrt{3}, 2)$, 3), $(4,0,2),(2,2 \sqrt{3}, 2)$
233	$(0,0,2),(4,0,3),(2,2 \sqrt{3}, 3)$	$(0,0,3),(4,0,3),(2,2 \sqrt{3}, 2)$, 3), $(4,0,2),(2,2 \sqrt{3}, 3)$
113	$(0,0,1),(4,0,1),(2,2 \sqrt{3}, 3)$	$(0,0,1),(4,0,3),(2,2 \sqrt{3}, 1)$, 3), $(4,0,1),(2,2 \sqrt{3}, 1)$
133	$(0,0,1),(4,0,3),(2,2 \sqrt{3}, 3)$	$(0,0,3),(4,0,3),(2,2 \sqrt{3}, 1)$, 3), $(4,0,1),(2,2 \sqrt{3}, 3)$
123	$(0,0,1),(4,0,2),(2,2 \sqrt{3}, 3)$	$(0,0,2),(4,0,3),(2,2 \sqrt{3}, 1)$, 3), $(4,0,1),(2,2 \sqrt{3}, 2)$
132	$(0,0,1),(4,0,3),(2,2 \sqrt{3}, 2)$	$(0,0,3),(4,0,2),(2,2 \sqrt{3}, 1)$, 2), $(4,0,1),(2,2 \sqrt{3}, 3)$

LEVEL 1 Start: any given coordinates in 526 - Calculate the Coordinates (see the table above), target position: any other given coordinates of the same block.
LEVEL 2 Start: any given coordinates of block 123 (or 132) in 526 - Calculate the Coordinates (see the table above), target position: any other given coordinates of the block 132 (or 123).

HINT It is enough to find transformations in the plane that transform an equilateral triangle with labelled vertices into a congruent triangle at the same position, but with permuted labels at the vertices. Then the 3 dimensional equivalents of the transformations give the solution.

