

- Lisa •
- Katia
- Oscar
- Minjian

Geometry

Trigonometric Ratios on the Coordinate Plane

MA.912.T.1.1

Define trigonometric ratios for acute angles in right triangles.

MA.912.T.1.2

Solve mathematical and real-world problems involving right triangles using trigonometric ratios and the Pythagorean Theorem.

□ I can determine trigonometric ratios using the coordinate plane.

Guided Instruction

Trigonometric Ratios

DEFINITION	SYMBOLS	DIAGRAM		
The sine of an angle is the ratio of the length of the leg opposite the angle to the length of the hypotenuse.	$\sin A = \frac{\text{opposite leg}}{\text{hypotenuse}} = \frac{a}{c}$ $\sin B = \frac{\text{opposite leg}}{\text{hypotenuse}} = \frac{b}{c}$			
The cosine of an angle is the ratio of the length of the eg adjacent to the angle to the ength of the hypotenuse.	$\cos A = \frac{\text{adjacent leg}}{\text{hypotenuse}} = \frac{b}{c}$ $\cos B = \frac{\text{adjacent leg}}{\text{hypotenuse}} = \frac{a}{c}$	A b C		
The tangent of an angle is the ratio of the length of the leg opposite the angle to the length of the leg adjacent to the angle.	$\tan A = \frac{\text{opposite leg}}{\text{adjacent leg}} = \frac{a}{b}$ $\tan B = \frac{\text{opposite leg}}{\text{adjacent leg}} = \frac{b}{a}$			

Guided Instruction: Using Trigonometric Ratios

1. ΔFLG and ΔFHR shown on the coordinate grid are isosceles right triangles.

a. Determine the measure of each angle.

Angle	Measure
$\angle LFG$	
$\angle FGL$	
∠FRH	

b. Using $\angle F$ as the reference angle, find the three ratios for each triangle.

Triangle	Cosine	Sine	Tangent
ΔFLG			
ΔFHR			

c. Use your calculator to find each. Round to the nearest thousandth, if necessary.

Angle	Cosine	Sine	Tangent
45°			

d. How are the ratios you found using $\angle F$ as the reference angle related to the values you found for the ratios of a 45° angle?

