HOMOTETIA

Semana Olímpica, N2, Teresina - PI, novembro de 2021 Tiago Sandino

1. INTRODUÇÃO

Homotetia trata de problemas com ampliações ou reduções, porém de maneira mais poderosa que semelhança. É uma transformação geométrica que preserva ângulos e proporções.

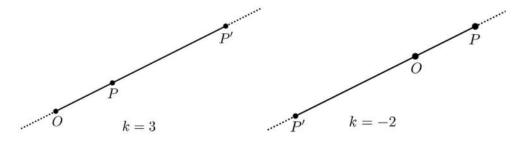
Veremos neste material apenas o básico da teoria, mas que não obstante, nos permite resolver problemas realmente bons.

Sugiro que, após estudar este material, procure estudar roto-homotetias, composição de homotetias, teorema de Monge-D'Alambert, reta e ponto de Nagel, reta de Simson e de Steiner e outras transformações geométricas.

2. DEFINIÇÕES E CONCEITOS INICIAIS

Definição (Homotetia). Dado um ponto O e um número real $k \neq 0$, definimos a homotetia de centro O e razão k (em notação: H(O, k)), como sendo a transformação geométrica que leva um ponto P até um ponto P' de maneira que $\overrightarrow{OP'} = k \cdot \overrightarrow{OP}$ e podemos escrever: P' = H(P).

Se k > 0, dizemos que a homotetia é direta; se k < 0, dizemos que a homotetia é inversa. Observe, abaixo, uma ilustração disso:



Uma consequência dessa definição é que: duas figuras são ditas "homotéticas" quando existe um ponto O e uma constante real $k \neq 0$ tal que, para todo ponto P de uma, existe um ponto P' de outra tal que $\overrightarrow{OP'} = k \cdot \overrightarrow{OP}$.

Também podemos classificar a homotetia da seguinte forma: se |k| > 1, dizemos que a homotetia é uma expansão (ou ampliação); se k = 1, dizemos que a homotetia é uma transformação identidade e, se |k| < 1, dizemos que a homotetia é uma contração (ou redução).

Observe que a homotetia é uma transformação afim, ou seja, que preserva colinearidade (pontos colineares continuam sendo colineares após a transformação) e razão entre distâncias.

3. PROPRIEDADES

Propriedade 1 (Colinearidade). Os pontos O, P e P' são colineares.

Essa propriedade segue diretamente da interpretação geométrica da transformação.

Propriedade 2 (Inclinação e Paralelismo Preservados). A inclinação de uma reta e, portanto, o paralelismo entre retas é preservado.

Vamos utilizar coordenadas cartesianas para demonstrar isso. Suponha que, através de H(0,k), uma homotetia com centro na origem e razão k, os pontos $A = (x_a, y_a)$ e $B = (x_b, y_b)$ são transformados nos pontos $A' = (kx_a, ky_a)$ e $B' = (kx_b, ky_b)$, respectivamente. Assim,

inclinação de
$$AB = \frac{y_b - y_a}{x_b - x_a} = \frac{k}{k} \cdot \frac{y_b - y_a}{x_b - x_a} = \frac{ky_b - ky_a}{kx_b - kx_a} = inclinação de $A'B'$.$$

No caso mais geral, em que a homotetia não é centrada na origem, basta considerar que uma homotetia H(O', k), com $O' = (\alpha, \beta)$, transforma o ponto (x, y) em $(k(x - \alpha) + \alpha, k(y - \beta) + \beta)$.

O paralelismo entre retas ser preservado é um corolário imediato.

Propriedade 3 (Ângulos Preservados). Ângulos são preservados. Isto é, se A' = H(A), B' = H(B) e C' = H(C), então $\angle A'B'C' = \angle ABC$ etc.

Como o paralelismo entre retas é preservado, $B'A' \parallel BA$ e $B'C' \parallel BC$, daí $\angle A'B'C' = \angle ABC$.

Propriedade 4 (Existência da Inversa). Toda homotetia tem uma inversa. Ou seja, dada a homotetia H(0,k), sempre existe sua inversa $H\left(0,\frac{1}{k}\right) = H^{-1}(0,k)$. Lembre-se que $k \neq 0$.

Essa propriedade também segue diretamente da interpretação geométrica da transformação.

Propriedade 5 (Razão entre Segmentos). Com H(O, k), temos $|A'B'| = |k| \cdot |AB|$.

Sem perca de generalidade, considere O a origem dos eixos cartesianos. Se $A = (x_a, y_a)$ e $B = (x_b, y_b)$ são transformados em $A' = (kx_a, ky_a)$ e $B' = (kx_b, ky_b)$, respectivamente, então:

$$|A'B'| = \sqrt{(kx_a - kx_b)^2 + (ky_a - ky_b)^2} = |k|\sqrt{(x_a - x_b)^2 + (y_a - y_b)^2} = |k| \cdot |AB|.$$

Propriedade 6 (Semelhança). Polígonos são transformados em polígonos semelhantes com razão de semelhança igual a k.

Essa propriedade é consequência das propriedades 3 e 5 juntas.

Propriedade 7 (Razão entre Áreas). Quando uma figura é obtida pela transformação homotética de outra, digamos de razão k, a razão entre suas áreas é k^2 .

Esta propriedade decorre imediatamente da anterior.

Propriedade 8 (Identidade). H(0,1) seria uma transformação identidade, isto é, não altera a figura.

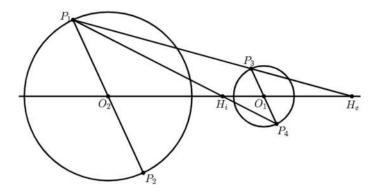
A demonstração segue diretamente da interpretação geométrica da demonstração.

Propriedade 9 (Reflexão). H(0,-1) é uma reflexão pelo centro ou uma rotação de 180° em torno do centro.

A demonstração segue da interpretação geométrica.

Essas nove propriedades acima são mais que suficiente para os problemas que seguem.

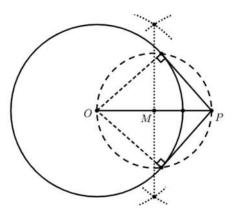
4. HOMOTETIA ENTRE CIRCUNFERÊNCIAS

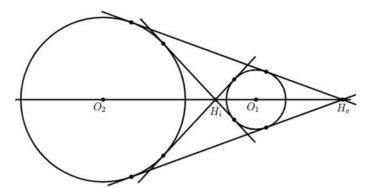


Duas circunferências sempre possuem uma relação de homotetia entre elas. Se as circunferências são tangentes, o ponto de tangência é o centro de homotetia. Se as circunferências são secantes ou uma interna a outra, possuem um centro de homotetia que podemos achar com um procedimento semelhante ao para encontrar os dois centros de homotetia de duas circunferências cuja distância d entre seus centros é maior que a soma das medidas de seus raios, estes, tidos como de medidas diferentes. Esse procedimento, ilustrado na figura acima, consiste em traçar dois segmentos paralelos, P_1P_2 e P_3P_4 e ligar, por exemplo P_1 a P_4 e P_1 a P_3 . Os cruzamentos dessas ligações com a reta que une os centros das circunferências são o centro de homotetia externo (ou direto) e o centro de homotetia interno (ou inverso).

Achados os centros de homotetia deste último caso, podemos traçar as tangentes, pois o centro de homotetia interno é o ponto de encontro das tangentes comuns internas e o centro de homotetia externo é o ponto de encontro das tangentes comuns externas.

O procedimento para traçar as tangentes a uma circunferência a partir de um ponto P externo dado é o seguinte: liga-se o ponto ao centro O da circunferência, acha-se o centro desse segmento, O0, e os pontos de tangências são os cruzamentos da circunferência dada com a de centro O1 e raio O2. Esse procedimento está ilustrado ao lado. O resultado da aplicação desse procedimento às duas circunferências com dois centros de homotetia está ilustrado abaixo.





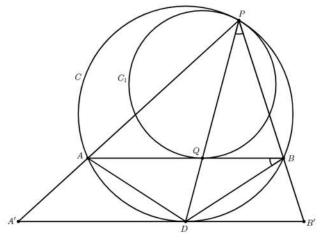
Se a circunferência de centro O_2 tem raio R e a de centro O_1 tem raio r, e além disso, a distância entre os centros é dada por d, então é fácil calcular as distâncias dos centros de homotetia interno (H_i) e

externo (H_e) ao, por exemplo, centro O_2 . Vou deixar esse exercício para o leitor, mas como dica, chegue nos seguintes resultados: $H_iO_2 = d\frac{R}{R+r}$ e $H_eO_2 = d\frac{R}{R-r}$.

Uma observação que pode ser bem útil, é que H_e e H_i são conjugados harmônicos em relação a O_1O_2 (só quebre a cabeça com isso se já souber o que seria divisão harmônica, quádruplas harmônicas etc). Nos problemas, haverá um que usa esse fato.

Exemplo 1 (Lema de Arquimedes ou Lema da Estrela da Morte). Se uma circunferência C_1 está tocando uma circunferência C internamente no ponto P, uma corda AB de C é tangente a C_1 em Q, então D, o ponto onde a reta PQ encontra C, bissecta o arco AB e, além disso, $DA^2 = DB^2 = DQ \cdot DP$.

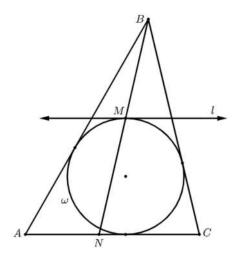
Demonstração. Observando a figura, vemos que a homotetia $H\left(P, \frac{DP}{QP}\right)$ é tal que A'B' = H(AB), daí $A'B' \parallel AB$ e, portanto, D é ponto médio do arco AB. Isso, por sua vez, implica que $\angle ABD =$



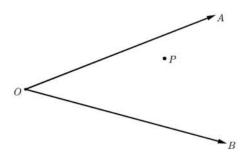
$$\angle DPB \Rightarrow \Delta QDB \sim \Delta BDP \Rightarrow \frac{DB}{DQ} = \frac{DP}{DB} \Rightarrow DB^2 = DA^2 = DQ \cdot DP$$
, como queríamos.

5. PROBLEMAS

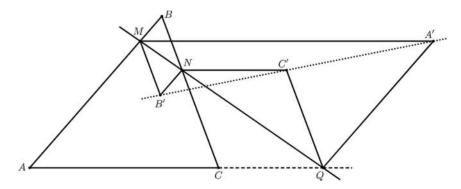
- 1. Seja ABC um triângulo tal que seu incentro toca os lados BC, CA, AB nos pontos D, E, F, respectivamente. Seja I o incentro do triângulo ABC e sejam os segundos pontos de interseção das linhas AI, BI, CI com o circuncírculo do triângulo ABC dados por A', B', C', respectivamente. Prove que as linhas A'D, B'E, C'F são concorrentes.
- **2 (IMO, 1978, P.4).** No triângulo ABC, temos AB = AC. Uma circunferência é tangente internamente ao circuncírculo e tangente aos lados AB e AC do triângulo nos pontos P e Q, respectivamente. Prove que o ponto médio de PQ é o centro do incírculo do triângulo.
- **3.** Seja ABC um triângulo e sejam K e L os pontos de tangência do incírculo e ex-incírculo relativos a A em BC. Seja ainda K' o ponto diametralmente oposto a K no incírculo. Prove que A, L e K' são colineares.
- 4 (All Russian, Grade 10, 2001). Seja a circunferência ω_1 internamente tangente a outra circunferência ω_2 no ponto N. A partir de um ponto K em ω_1 , desenhe uma tangente AB que intersecte ω_2 em A e B. Seja M o ponto médio do arco AB que está no lado oposto a N. Prove que o circunraio de ΔKBM não depende da escolha de K.



- **5.** Em um triângulo ABC, está inscrita uma circunferência. Uma reta é paralela a \overline{AC} e tangente à circunferência em M. Se \overrightarrow{BM} intersecta \overline{AC} em N, AB = 9, BC = 7 e AC = 6, calcule AN.
- **6.** Exterior ao quadrado ABCD e relativo ao lado BC se localiza o ponto E. Se $\angle BEC = 90^{\circ}$, \overline{EA} e \overline{ED} intersectam \overline{BC} em M e N, respectivamente, BM = a e CN = b, ache MN.
- 7. Na figura seguinte, trace uma circunferência que passe por P e seja tangente a \overrightarrow{OA} e a \overrightarrow{OB} .

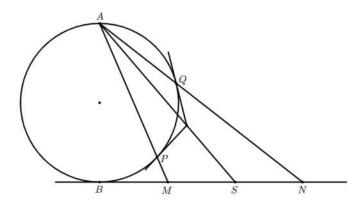


8. Na figura abaixo, AMA'Q, BNB'M e CNC'Q são paralelogramos. Demonstre que A', B' e C' são colineares.



9. Consideram-se duas circunferências tangentes em A e de diâmetros AB e AC, com C entre A e B. Por A, traça-se uma reta de direção variável que corte a primeira circunferência em B', e o segundo em C'. Achar o lugar geométrico do ponto de interseção, M, de BC' e CB'.

10. Na figura abaixo, B, P e Q são pontos de tangencia. Se MS = 5, calcule SN.



11. Em um triângulo retângulo ABC, reto em B, se inscreve o quadrado MNPQ, tal que N e P pertencem a \overline{AC} . \overline{AM} e \overline{CQ} se intersectam em O, $\angle ACB = 53^{\circ}$ e a distância de O a \overline{AC} é 5u. Ache a distância de O a \overline{AB} .

12 (IMO, 1982, P.2). Um triângulo não-isósceles $A_1A_2A_3$ é dado e tem lados a_1 , a_2 , a_3 (a_i oposto a A_i). Para todo i = 1, 2, 3, M_i é o ponto médio do lado a_i e T_i é o ponto onde o incírculo toca o lado a_i . Denote por S_i a reflexão de T_i pela bissetriz interna do ângulo $\angle A_i$. Prove que as linhas M_1S_1 , M_2S_2 e M_3S_3 são concorrentes.

13 (IMO, 1999, P.5). As circunferências C_1 e C_2 estão dentro da circunferência C e são tangentes a ela nos pontos M e N, respectivamente. C_1 passa pelo centro de C_2 . A corda comum de C_1 e C_2 , quando prolongada, encontra C em A e B. As linhas MA e MB encontram C_1 novamente em E e F. Prove que EF é tangente a C_2 .

14 (APMO, 2000, P.3/5). Seja ABC um triângulo. Sejam M e N os pés da mediana e bissetriz, respectivamente, a partir do vértice A e chegando em BC. Sejam Q e P os pontos nos quais uma perpendicular em N a NA encontra MA e BA, respectivamente, e O o ponto no qual a perpendicular por P a BA encontra o prolongamento de AN.

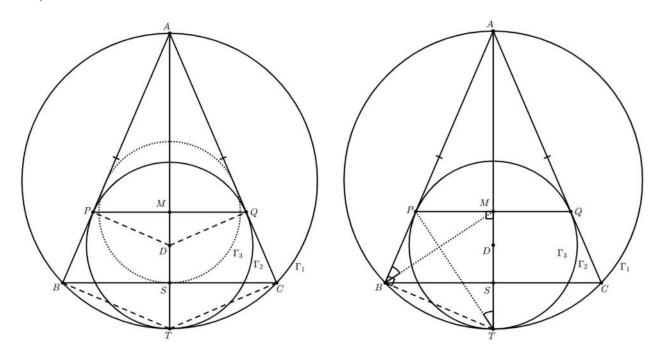
- **15.** Seja ABCD um trapézio com AB > CD e $AB \parallel CD$. Os pontos K e L estão nos segmentos AB e CD, respectivamente e de modo que $\frac{AK}{KB} = \frac{DL}{LC}$. Suponha que existem pontos P e Q na linha KL satisfazendo $\angle APB = \angle BCD$ e $\angle CQD = \angle ABC$. Prove que os pontos P, Q, B, C são concíclicos.
- **16.** Dados dois círculos, mostrar que a distância do centro de homotetia direta a uma tangente comum interior é independente da distância dos centros. O mesmo acontecerá com a distância do centro de homotetia inversa a uma tangente comum exterior.

6. AJUDA

- 1. O triângulo DEF tem lados paralelos aos correspondentes em A'B'C', ou seja, há uma homotetia com centro em um determinado ponto P que transforma DEF em A'B'C'. O ponto P seria esse ponto de concorrência.
- **2.** Esse problema possui generalizações interessantes, mas aqui, vamos nos ater a duas soluções simples, uma simples por homotetia e uma simples marcando ângulos.

Primeira Solução:

Considere a figura abaixo e à esquerda. Veja que ABTC = H(APDQ), onde H tem razão AT/AD e centro A. Temos também que $\Gamma_3 = H(\Gamma_2)$, pois os pontos P e Q são transformados em pontos ainda tangentes aos lados AB e AC e, como as razões são preservadas, $\frac{AT}{AS} = \frac{AD}{AM}$, ou seja, S = H(M) o que implica que Γ_3 é tangente a BC em S.. Assim, como Γ_3 é tangente internamente aos lados do triângulo ABC, é seu incírculo.



Uma outra solução interessante por homotetia, seria prolongar AB e AC até aparecer o triângulo no qual Γ_2 é incírculo.

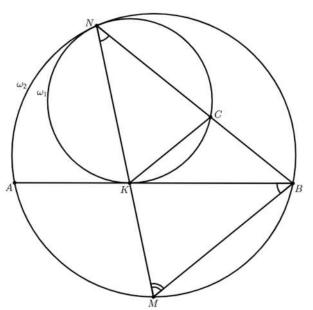
Segunda Solução.

Considere a figura acima à direita. Se $\angle ABC = \beta$, então $\angle APQ = \angle PTQ = \beta$, daí $\angle PTM = \frac{\beta}{2} = \angle PBM$, pois PBTM é inscritível. Assim, como AS e BM são bissetrizes, M é o incírculo.

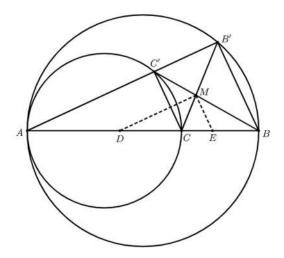
3. Trace a reta B'C' paralela a BC e que tangencia o incírculo de $\triangle ABC$ em K'. Note então que $\triangle ABC$ e $\triangle AB'C'$ são homotéticos com centro em A. Finalmente, o incírculo de $\triangle ABC$ é ex-incírculo de $\triangle AB'C'$, de modo que os pontos K' e L são correspondentes na homotetia e estão, portanto, alinhados com A.

4. Seja C o segundo ponto de interseção do segmento NB com ω_1 . Sejam o raio de ω_2 , R, o de ω_1 , r e o da circunferência circunscrita ao triângulo KBM, r_1 . A homotetia que transforma ω_1 em ω_2 , leva C até B e K até M (Lema de Arquimedes). Em razão da homotetia, $KC \parallel MB$ e $\frac{NC}{NB} = \frac{r}{R}$ (I). Como $\Delta MBK \sim \Delta MNB$ (ângulo-ângulo), então $\frac{BK}{NB} = \frac{r_1}{R}$ (II). Por potência de ponto, $BK^2 = BC \cdot BN \Rightarrow \frac{r_1^2}{R^2} = \frac{BC}{NB} = \frac{NB-NC}{NB} = 1 - \frac{NC}{NB} \Rightarrow 1 - \frac{r}{R} \Rightarrow r_1 = R\sqrt{1 - \frac{r}{R}}$, que não depende da

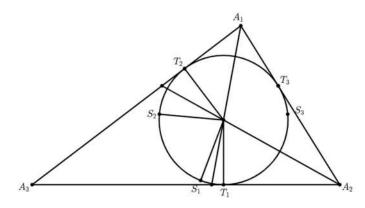
escolha de *K*.



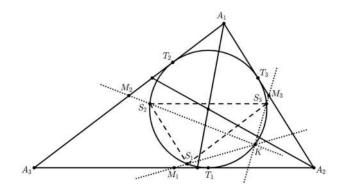
- **5.** Sejam $D = l \cap \overline{AB}$, $E = l \cap \overline{BC}$ e $F = \omega \cap \overline{AC}$. Por homotetia, a circunferência inscrita em ΔBDE é tangente a l em $G = \overline{BF} \cap l$. Verifique que DM = GE e então, pela homotetia, AN = FC. Resposta: AN = 2.
- **6.** Desenhe um quadrado dentro do triângulo homotético ao dado. Resposta: \sqrt{ab} .
- 7. Trace a bissetriz de $\angle AOB$, desenhe uma circunferência qualquer, ligue O a P e prolongue até cortar a circunferência (escolha um dos pontos, cada um dará uma solução). Ache o centro da circunferência desejada por homotetia.
- **8.** Prolongue $\overline{MB'}$ e $\overline{A'Q}$ até se encontrarem em um ponto Q' e $\overline{QC'}$ até um ponto M' em $\overline{MA'}$. Use o teorema de Tales para provar que $\frac{MB'}{B'Q'} = \frac{M'C'}{C'Q}$, perceba então uma homotetia de centro em A' que transforma C' em B'.
- 9. $\frac{BM}{BB'} = \frac{MC'}{CC'} \Rightarrow \frac{BM}{AB} = \frac{MC'}{AC} = \frac{BC'}{AB+AC} \Rightarrow \frac{BM}{BC'} = \frac{AB}{AB+AC}$. Assim, o lugar geométrico de M é a circunferência homotética de diâmetro AC em relação ao ponto B e cuja razão de homotetia é $\frac{AB}{AB+AC}$. Tracemos MD e ME paralelas a C'A e a C'C, respectivamente. D e E são homólogos de A e C e o lugar geométrico é a circunferência de diâmetro DE.



- **10.** Sendo T o ponto de interseção das tangentes por P e por Q, considere a homotetia de centro em A e razão $\frac{AS}{AT}$. Ligue também BQ e BP. Resposta: SN = 5.
- 11. Transforme o quadrado com a homotetia de centro em A e razão $\frac{AO}{AM}$. Lembre-se que esses ângulos estão associados aos triângulos de lados proporcionais a 3, 4, 5. Resposta: 3u.
- 12. Vamos começar mostrando que os pontos S são dois a dois distintos. Observando a figura logo abaixo, se por exemplo S_1 coincidir com S_2 , então o ângulo central do arco $\widehat{T_1T_2}$ e que contém S_1 seria o dobro de $90^\circ + \frac{\gamma}{2}$, absurdo, logo os pontos S são distintos dois a dois.



Agora vamos provar que S_1S_2 é paralelo a A_1A_2 . Devido à simetria em torno da bissetriz que passa por A_1 , $T_1T_2 = S_1T_3$ e devido à simetria em torno da bissetriz que passa por A_2 , $T_1T_2 = S_2T_3$. De modo que $S_1T_3 = S_2T_3$ e o triângulo $S_1T_3S_2$ é isósceles de base S_1S_2 , daí a altura deste triângulo que sai de T_3 também é mediana, então $S_1S_2 \parallel A_1A_2$. Assim, $M_1M_2 \parallel S_1S_2$ e, analogamente os outros lados dos triângulos $M_1M_2M_3$ e $S_1S_2S_3$ são paralelos, daí os mesmos são semelhantes e de lados paralelos, ou seja, um pode ser obtido do outro por homotetia. Como o incírculo está dentro do circuncírculo do triângulo $M_1M_2M_3$ (que é o círculo dos nove pontos), a figura fica como abaixo.

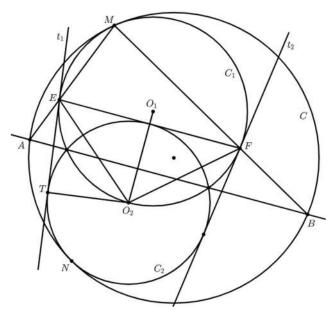


Obs.: Note que o ponto *K* está exatamente no incírculo. Isto está relacionado ao teorema de Feuerbach. Não é necessário saber disso neste problema, mas certamente facilitaria fazer o desenho.

13. Considere a figura ao lado, na qual os centros de C_1 e C_2 são, respectivamente O_1 e O_2 e as tangentes comuns são t_1 e t_2 .

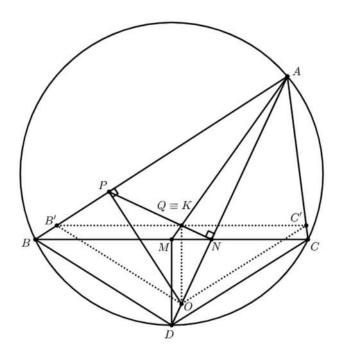
Pelo Lema de Arquimedes, A e B são pontos médios dos arcos determinados pelas tangentes e possuem a mesma potência de ponto, são, portanto, pertencentes ao eixo radical.

Agora, considere a homotetia de centro M e que transforma C_1 em C. A imagem de EF é AB, de onde sabemos que esses segmentos são paralelos e perpendiculares a O_1O_2 . Consequentemente, O_2 bissecta o arco EF de C_1 (o que não contém M), ou seja, $\angle EO_1O_2 = \angle FO_1O_2$. Sendo T o ponto de tangência de C_2 com t_1 , temos $\angle TEO_2 =$

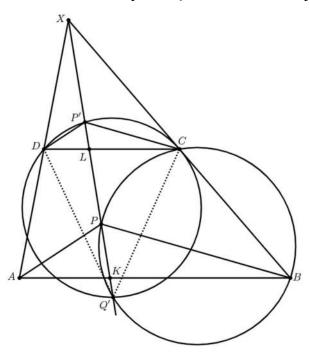


 $\frac{1}{2} \angle EO_1O_2 = \frac{1}{2} \angle FO_1O_2 = \angle FEO_2$. Assim, EO_2 bissecta $\angle TEF$, então O_2 é equidistante a t_1 e EF, daí EF é, de fato, tangente a C_2 .

14. O caso em que AB = AC é trivial. Vamos assumir que AB > AC. Seja D a interseção do prolongamento de AN com o circuncírculo de ABC. Temos $\angle DBC = \angle DAC = \frac{1}{2} \angle BAC = \angle DAB = \angle DCB$. Então, DB = DC e MD é perpendicular a BC. Considere a homotetia com centro em A e que transforma $\triangle DBC$ em $\triangle OB'C'$, então OB' = OC' e $BC \parallel B'C'$. Seja $K = PN \cap B'C'$, então $\angle OB'K = \angle DBC = \angle DAB = 90^{\circ} - \angle AOP = \angle OPK$, de modo que PB'OK é cíclico. Então $\angle B'KO = \angle B'PO = 90^{\circ}$ e B'K = C'K, como $BC \parallel B'C'$, temos $K \in MA$. Assim, $K \equiv Q$ e $\angle B'KO = 90^{\circ} \Rightarrow QO = KO \perp B'C'$. Portanto, $BC \parallel B'C' \Rightarrow QO \perp BC$.



15. Seja X o encontro entre as retas AD e BC. Observe que há uma homotetia de centro em X que leva o segmento DC ao AB e, como $\frac{AK}{KB} = \frac{DL}{LC} \Rightarrow \frac{AK}{DL} = \frac{KB}{LC}$, essa homotetia também leva L até K. Isso prova que X pertence à linha KL. Seja Q' o segundo ponto de interseção da linha KL com o circuncírculo do triângulo PBC, note que nosso objetivo é mostrar que Q' = Q. Seja agora a homotetia de centro em X que leva AB até DC. Essa homotetia leva P até P'. Como o quadrilátero PQ'BC é cíclico, temos $\angle QCB = \angle Q'PB$ e, como é dado, $\angle APB = \angle BCD$, de onde $\angle Q'CD = \angle Q'PA$. Como $\angle Q'PA = \angle Q'P'D$, o quadrilátero Q'CP'D é cíclico. Portanto $\angle P'Q'D = \angle P'CD = \angle PBA$ e, como PQ'BC é cíclico, temos $\angle PQ'C = \angle PBC$, daí achamos que $\angle CQ'D = \angle ABC$, ou seja, Q' = Q.



16. Use o fato de que os centros de homotetia são conjugados harmônicos do segmento que une os centros das circunferências.

7. REFERÊNCIA BIBLIOGRÁFICA

- [1] Caronet, T. H.. Exercícios de Geometria. 5ª ed. Complementos. Rio de Janeiro RJ. Editora Livro Técnico. 1960.
- [2] Andreescu, T.; Pohoata, C. Lemmas in Olympiad Geometry. XYZ Books. 2016.
- [3] https://brilliant.org/wiki/euclidean-geometry-homothety/. Acessado em outubro de 2021.
- [4] Mathematical Excalibur. Vol. 9, n° 4.