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Compute each of the following integrals.
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Practice Problems

223 — 22 — 10x — 4
7./ R dx

5 — 17
g [ 22—
/x2—6x+9 v

9 /2:c2+7:c+3

d
2 +1 v

10 / 222 —x + 20
' (x —2) (22 +9)

4

x
11. —d
/x4—16 o

4

x
8. /w4_1dx
9./sec:z:da:

10. /csch:n dx
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Sample Problems - Answers

1 1 3 1
1.) Zln\m—2\—iln\x+2|+0 2.) Zln\m+3\—ﬁln]3x+l\—l—0 3.) 2Injz—3|—In|z+1]+C
5 13 2 1 1 2
4.) x——332+533+—ln|x—|—4|—|—71n|:n—1\+C 5) —=lnlz+1|—-Injz —2|+ -Injz - 5[+ C
3 ) ) 6 3 3
9 1 2 —x—1
6.) 2ln|lz —5|— ——+C 7.) — — +C = +C
) | -3 e (z —1)? (z —1)?
1 1 1
8.) m—Earctan:v—Zln|$+1]+11n\m—1|—l—0 9.) In|secx +tanz|+ C = —In|secx — tanz| + C

10.) Inle* =1/ —In(e*+1)+C

Practice Problems - Answers

1 1 1 1 1
1.) gln|$|—§ln|x+3]+0 2.) gln|x—l—2|—61n|x—4]—i—0 3.) %ln|x—a|—%ln|x—l—a|—|—0
1 3 1 1 Tt
4.) Zln|az—2|+11n|x+2|—|—0 5.) iln(m2+4)—§tan 1533—}—0
1 9 ,
6.) :L‘—I—Zln|x—1|—11n|x+3]—i—c 7) z*—z—3njz—-2|+hnlz+2/+C
2 7 9 1
8.) 51n\x—3|+m+0 9.) 2x+§ln(:c +1)+tan~tz +C
10.) 2ln|$—2|—1tan_1E+C 11.) x+lln|x—2|—}ln]x+2]—tan_1£+0
. 3 3 ' 2 2 2
—1 2 1 3 9
12.) tan 'z +In (22 +1)+C 13.) gln\a: +6z|+C 14) ~je+3- —=+C

15.) 1n(x2+9)—tan—1§+c 16.) Injz|+Injz—1|—In|z+1|+C
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Sample Problems - Solutions

Compute each of the following integrals.

1
1. /x2_4dx

Solution: We factor the denominator: z? — 4 = (z +2) (x — 2). Next, we re-write the fraction

——— as a
22 —4
sum (or difference) of fractions with denominators « + 2 and  — 2. This means that we need to solve for A
and B in the equation
A n B 1
r+2 -2 224

To simplify the left-hand side, we bring the fractions to the common denominator:

Az —2) n B(x+2)  Axr—-2A+Bx+2B (A+B)x—-2A+2B
(z+2)(x—2) (x—2)(z+2) 2 —4 B xz? —4
Thus we have
(A+B)x—2A+2B 1
2 —4 24

We clear the denominators by multiplication
(A+B)z—2A+2B =1

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coefficient. In other words,

(A+B)z —2A+2B =0z +1

This gives us an equation for each coefficient, forming a system of linear equations:

A+B = 0
—2A+2B =
. . 1 1
We solve this system and obtamA:—Z andB:Z.
1 1
So our fraction, can be re-written as — % —I—i. We check:
22 —4 x+2 x-—2
1 1 1 1 1 1 1 1
- = = (z—2 Sz +2 (-2 +-(2+2) ——r+-+-x+-
4 4 -2 e A S e N i B G
r+2 x—2 (x4+2)(z—-2)  (z—2)(x+2) (x+2)(x—2) (r+2)(x—2)
1
224

1
1 ~1 1 1/ 1 1/ 1 1 1
— dr= do=—> [ ——de+> [ —— de=|—=1 2+ -Inlz—2/+C
/9:2—4 o /w+2+x—2 v 4/w+2 x+4/m—2 v gzt 2+ ginfe =2+
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Method 2: The values of A and B can be found using a slightly different method as follows. Consider first

the equation
A B 1

x—|—2+x—2 2 —4

We bring the fractions to the common denominator:

A(x—2) B(z+2) 1

(+2)(z—2) (x—2)(x+2) 22-4

and then multiply both sides by the denominator:
A(x—2)+B(x+2)=1

The equation above is about two functions; the two sides must be equal for all values of z. Let us substitute
x = 2 into both sides:

A(0)+B(4) =
B =

=

Let us substitute £ = —2 into both sides:
A(-4)+B((0) = 1
A = —=

1 1
andsoA:—ZandB:Z.

2z
2 /(x+3)(31:+1) dx

2
Solution: We re-write the fraction i as a sum (or difference) of fractions with denominators
(x+3)(Br+1)

z + 3 and 3z + 1. This means that we need to solve for A and B in the equation

A 4 B 2x
r+3 3x+1 (z+3)Bz+1)

To simplify the left-hand side, we bring the fractions to the common denominator:

A N B B ABz+1) B(z+3)  A@Bz+1)+B(r+3) 3Az+ A+ Bx+3B
z+3 3z+1  (z4+3)Bz+1) (z+3)Bz+1)  (z+3)Bz+1) (z+3)Bz+1)
(BA+B)z+ A+ 3B

(x+3)Bz+1)

Thus we have
(3A+B):I:+A+3B_ 2x

(x+3)Bz+1)  (z+3)Bz+1)

We clear the denominators by multiplication

(3A+ B)z+ A+3B =2z

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coefficient. In other words,

BA+B)x+A+3B=22+0

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013
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This gives us an equation for each coefficient, forming a system of linear equations:

3A+B =
A+3B =
. . 3 1
We solve this system and obtain A = 1 and B = 71
3 1
So our fraction 22 can be re-written as 4 + 4 We check:
"(z4+3) Bz +1) r+3 3z+1 '
3 1 3 1 3 1 9 3 1 3
- —= -(3 1 —= 3 -(3 1) — - 3 - - ——-r— -
i, i1 4(3:+) . 4(:1:+) :4(33+) 4(ZE+)_4IL‘—|-4 i
r+3 3z+1 (z+3)Bz+1) (x+3)3x+1) (x+3)(Bz+1) (x4+3)(Bz+1)
2x

(x+3)(3x+1)

Now we can easily integrate:

3

2z
/(w+3)(3x+1) de

1

The second integral can be computed using the substitution v = 3x + 1.

Method 2:
the equation

A B

2

z+3

We bring the fractions to the common denominator:

ABz+1)

B (z+3)

+3:L“+1 - (x+3) 3z +1)

2z

1 ~1 301 1/ 1
do =2 do—= do =
/;c+3+3x+1 v 4/w+3 a3 1™

3 1
Zln|x—|—3|—ﬁln|3:1:+1|—|—0

The values of A and B can be found using a slightly different method as follows. Consider first

(x+3) Bz +1)

(x+3)(3z+1)

and then multiply both sides by the denominator:

(r+3)Bz+1)

ABx+1)+B(x+3) =2z

The equation above is about two functions; the two sides must be equal for all values of z. Let us substitute

1
T = —— into both sides:

Let us substitute £ = —3 into both sides:

3 1
andsoAzZandB:—Z.

(© copyright Hidegkuti, Powell, 2012

AB(=3)+1)+ B(~3+3)
—8A + B(0)

84

A

[\
)Jk\v—loo\l\b/?
Wl =

~_
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r+5
3. —d
/m2—2m—3 v

Solution: We factor the denominator: 22 —2x—3 = (z + 1) (z — 3). Next, we re-write the fraction

T+5

2
T4 —2x —3
as a sum (or difference) of fractions with denominators = + 1 and = — 3. This means that we need to solve

for A and B in the equation
A B T +5

CE+1+.%‘—3 T 22223
To simplify the left-hand side, we bring the fractions to the common denominator:

A(x—3) B(zx+1)  Ar—-3A+Br+B (A+B)r—-3A+B
(z+1)(xz-3) (x-3)(z+1)  22-22-3 x2 — 21 —3
Thus
(A+B)z—-3A+B  z+5
2?2 —2x -3 2?2 -22-3

We clear the denominators by multiplication
(A+B)z—3A+B=z+5

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coefficient. This gives us an equation for each coefficient, forming a system of linear

equations:
A+ B
—-3A+B =5
We solve the system and obtain A = —1 and B = 2.
-1 2
So we have that our fraction, ‘Ti—l_&') can be re-written as + . We check:
22 —2x—3 z+1 z-3
-1 N 2 —1(x-3) 2(x+1)  —(z-3)+2(x+1) —2+3+2x+2  x+5
r+1 2-3 (z+1D(z-3) (x-3)(z+1)  (2+1)(z—-3) 22-22-3  22-22-3

Now we can easily integrate:

z+95 -1 2 1 1
——— dr = dx = — dr +2 [ —— dor =] -1 I|+2ln|z - 3|+ C
/x2—2x—3 x /ac+1+a:—3 x /x—i—l x + /m—?) x ’ nlz+1)+2Infz — 3| + ‘

Method 2: The values of A and B can be found using a slightly different method as follows. Consider first
the equation

A n B z+5
zt+1 -3 22-—2x—3
We bring the fractions to the common denominator:

Az —3) B(x+1) x+5

(x=3)(x+1) (x—=3)(x+1) a2—-2x-3

and then multiply both sides by the denominator:
A(z—3)+B(z+1)=x+5

The equation above is about two functions; the two sides must be equal for all values of z. Let us substitute
x = 3 into both sides:

A0)+B4) = 3+5
AB = 8
B = 2

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013
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Let us substitute z = —1 into both sides:

A(—4)+B(0) = —1+5
—4A = 4
A = -1

and so A = —1 and B = 2.
/£C4+:B3—5:B2+26:L‘—21
24+ 3x—4

Solution: This rational function is an improper fraction since the numerator has a higher degree than the
denominator. We first perform long division. This process is similar to long division among numbers. For

dzx

3
example, to simplify - we perform the long division 38 —~7 = 5 R 3 which is the same thing as to say that

? = 5%. The division:
T - 2z + 5
22 + 3z — 4 ) 2* + ¥ — 52 + 260 — 21
—z* — 323 4+ 422
— 223 — 22 4+ 262 - 21
223 + 622 — S8z
502 + 18z — 21
— 522 — 15z + 20
3 — 1
4 2
Step 1: r% =22 Step 3: 5% =5
T T
$2($2+3$—4):$4+3$3—41‘2 5($2+3$—4):5$2+15$—20

— (ac4 + 323 — 4302) = —* — 323 + 422
We add that to the original polynomial shown above.
— 93 We add that to the original polynomial shown above.

—1 (522 + 15z — 20) = —52% — 152 + 20

Step 2:

-2 (:102 + 3x — 4) = 223 — 622 + 8z
—1(—22% — 627 + 8z) = 22° + 62 — 8

We add that to the original polynomial shown above.

The result of this computation is that

4 3 2
T* +x° — 5x° + 26x — 21 9 3z —1
22t 37 — 4 SO - B e

very much like 3—78 =5+ % Thus

44 43 — 522 4+ 260 — 21 3r—1 3r—1
/x T2 v+ 2bw dx = /w2—2x+5—|—”dx:/x2—2x+5dx+/xd:v
X

22+ 3z —4 x2 + 3z — 22+ 3z —4
3 3 —1
2
= — - 5 C d
3 T° + ox + 1+/ 2+3x_4x
. . 3r—1
We apply the method of partial fractions to compute | — dz.
22+ 3x —4

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013
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3z —1
2+ 3z —4
sum (or difference) of fractions with denominators  + 4 and  — 1. This means that we need to solve for A
and B in the equation

We factor the denominator: 22 + 3z —4 = (v +4) (x — 1). Next, we re-write the fraction as a

A n B 3z-1
z+4 x—1 22+43zx—4
To simplify the left-hand side, we bring the fractions to the common denominator:

A(x—1) B(r+4)  Arx—-—A+Bx+4B (A+B)rx—A+4B

(z4+4)(z—-1) (x+4)(xz-1) 22+ 3z—4 22+ 3zx—4
Thus
(A+B)z—A+4B  3z—1
22 +3x —4 224 3x—4
We clear the denominators by multiplication

(A+B)x —A+4B=3z—1

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coefficient. This gives us an equation for each coefficient that forms a system of linear
equations:

A+B = 3
—A+4B = -1
. 13 2
We solve the system and obtain A = = andB:g.
13 2
1 = T
So our fraction, it N can be re-written as —2 + 5 . We check:
2 +3x —4 z+4 x-1
13 2 13 2 13 2
— - —(z—1) —(x+4) — (-1 +=-(x+4)
5 4.5 _ 5 45 _ 5 5
x+4 -1 (x+1D)(z—4) (x—4)(x+1) (x+1)(z—4)
13 13+2 +8 15 5
—r— —+ -+ - —r— -
_ 5 5 5 '5__ 5 5 _ 3dx-1
(x+1)(z—4) 2 +3r—4 22+3x—4

Now we can easily integrate:
2 13 2
3v—1 5 5 5 / 5
/x2+3x—4 o /a:+4+:1;—1 o x+4 T -1

13 1 2 1 13 2
= | —d - | ——dx = —1 4 =1 -1 C
5 | v :L‘—|—5/x_1 x 5n\m+|+5n|az | +

Thus the final answer is

/x4+x3—5x2—|—26:p—21d
€T =
224+ 3z —4
B, 3z —1 B, 13 2
= g—x +5!13+Cl+ md.ﬁ:?—m +5x+01—l—gln\x—l—él\—i—gln\x—l]—l—(?g

3

13 2
= %—x2+5x+gln\m+4\+51n|x—1|+0

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013
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Method 2: The values of A and B can be found using a slightly different method as follows. Consider first

the equation
A B 3r—1

x—|—4+x—1 T 2+3r-4
We bring the fractions to the common denominator:

A(x—1) B (z+4) 3z —1

(x+4)(x—1) (z+4)(x—1) (x+1)(x—4)

and then multiply both sides by the denominator:
A(z—1)+B(z+4)=3z—-1

The equation above is about two functions; the two sides must be equal for all values of z. Let us substitute
x = 1 into both sides:

Al-1)+B(1+4) = 3z-1
A0+B-5 = 3-1—1

5B = 2

2

B = 2

5

Let us substitute £ = —4 into both sides:

A(=4—1)+ B(—-4+4) = 3(-4)—1

—5A = —-13

4 =2

4 11
andsoA:gandB:€.

2 +x—3
g /(x+1)(m—2)(:c—5) du

Solution: We re-write the fraction

24+ —3

(x+1)(x—2)(z—5)
nators £ + 1, x — 2 and x — 5. This means that we need to solve for A, B, and C' in the equation

as a sum (or difference) of fractions with denomi-

A B C 2 +x—3

x+1+x72+x75_(a:+1)(:v72)(x75)

To simplify the left-hand side, we bring the fractions to the common denominator:

A N B N ¢ Az —2)(x—5) B(z+1)(z—5) Cz+1)(x—2)
r+1 z-2 x-5 (z4+1)(x—=2)(z—=5) (x+1)(z—=2)(z—5) (r+1)(xz—2)(z—5)
_ A(a:27733+10) B(m274m75) C($275B72)

Gt (@-2 (25 @+ (@-2 (-5  (@+1)(z—2)(z—5)
A(x2—73:—|—10)+B(x2—4x—5)+C’(m2—x—2)
(x+1)(z—2)(x—5)
Az? — TAz + 10A + Bx? — 4Bx — 5B + Cz%2 — Cxz — 2C
(x+1)(z—2)(x—5)
(A+ B+ C)2?>+ (-7TA—4B - C)xz + 10A - 5B — 2C
(x+1)(z—2)(z—5)

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013
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Thus
(A+B+C)2*+ (—-TA—4B - C)z + 10A— 5B —2C _ 2 +x—3

(x+1)(z—2)(z—5) (x4 1) (x—2)(x—5)
We clear the denominators by multiplication

(A+B+C)a*+ (-TA—4B - C)z+10A -5B - 2C =2* +z — 3

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coefficient. We have an equation for each coefficient that gives us a system of linear

equations:
A 4+ B 4+ C = 1
—-7TA — 4B — C = 1
10A — 5B — 2C = -3

We solve the system by elimination: first we will eliminate C from the second and third equations. To
eliminate C' from the second equation, we simply add the first and second equations.

A +B+C=1
—7A —4B — C =1
—6A — 3B = 2
To eliminate C' from the third equation, we multiply the first equation by 2 and add that to the third equation.
2A + 2B + 2C = 2

10A — 5B — 2C = -3
12A — 3B = -1
We now have a system of linear equations in two variables:
—6A—-3B = 2
12A - 3B -1

We will eliminate B by adding the opposite of the first equation to the second equation.

6A + 3B = —2
12A — 3B = -1
184 = -3
A= -1

6

Using the equation 6A 4+ 3B = —2 we can now solve for B.

1
6(—=)+3B = -2
()

~143B = -2
3B = -1

1

B = —-

3

Using the first equation, we can now solve for C.

No|w -

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013
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1 1 3
Thus A=—-—=-, B=—- dC=-
us 5 3,an 5

1 1 3
22z -3 5 3 B

So we have that our fraction, i) @—2 (=5 can be re-written as . +61 + . _32 i -

S g L) @-s —é(:c—i—l)(:c—S) %(az+1)(:c—2)

We check:

5

6 + +
5 (z4+1)(x—=2)(z—-5) (x4+1)(x—2)(z—-5) (x+1)(x—2)(z—5)
@2 @-5) - @+ )-8+ @+ 1) (@-2)
(z+ )(58—2)(90—5)
—é(m —71’+10) ( 4$—5)+g($2—$—2)

(33+1)(:U— 2) (z —5)
1 7 5 1., 4 5 3., 3
2 2 2
_Z 2 _2 e+ 2422 2, 3
6" Te" 3 3V T3¥tgtat 797

(x+1)(z—2)(x—05)

L1035 (T, 43 5.5,
6 3 2 6 3 2 3" 3

(x+1)(z—2)(x—5)
2> +x—3
(x+1)(z—2)(x—5)

Now we can easily integrate:
1 1 3

w2+ —3 6 3 9
de = d
/(x+1)(:v—2)(x—5) v /x+1+x—2+x—5 v
1 1 1 1 3 1

1 1
= 761n|$+1]7gln\m72|+§ln|x75|+0

Method 2: The values of A, B, and C can be found using a slightly different method as follows. Consider

first the equation
A B C w2+ —3
+ + =
z+1 z-2 z-5 (x4+1)(x—2)(z—-5)
We bring the fractions to the common denominator:
A(x—2)(z—5) B(z+1)(x—5) Cz+1)(z—-2) 22 +x -3
(z+1D)(z-2)(z-5) (z+D)(x—-2)(xz-5) (z+)(x-2)(z—-5) (z+1)(z—2)(x—>5)

and then multiply both sides by the denominator:

Ax—2)(x =5 +B@+1)(z—-5)+Cx+1)(z—2)=2+z—-3

The equation above is about two functions; the two sides must be equal for all values of z. Let us substitute
x = 2 into both sides:

A2-2)2-5)+B2+1)(2-5)+C(2+1)(2-2) = 22+2-3

0A-9B+0C = 3
-9B = 3

B = -1

3

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013
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Let us substitute £ = —1 into both sides:

A(=1=2)(=1=5)+B(-1+1)(-1=-5)+C(-1+1)(-1-2) = (=1)*+(-1)-3
A(=3)(=6)+0B+0C = -3
184 = -3
a4 - 1
6

Let us substitute = 5 into both sides:

ABG-2)5-5)+BGB+1)(B-5)+CGB+1)(5-2) = 5°+5-3
A0)+B(0)+C(6)(3) = 27

18C =

C =

andsoA:—é,B:—l,andC:g

3 3
2z — 1
6. [ 2 s
(z —5)

. . . .o 2x—1 . . . .
Solution: We will re-write the fraction 75)2 as a sum (or difference) of fractions with denominators x —5
x —_

and (2 —5)%. This means that we need to solve for A and B in the equation
A B 2z — 1

x—5+(:c—5)2:(:c—5)2

To simplify the left-hand side, we bring the fractions to the common denominator:

A N B _A(x75)+ B A(x-5+B Ar—-5A+B
r=5 (=57 (@-5° (@-5° (-5  (z-5)

Thus we have
Axr —5A+ B 21

(x-5°  (z-5)

We clear the denominators by multiplication

Arx —5A+B =2z -1

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coefficient. This gives us an equation for each coefficient, forming a system of linear

equations:
A = 2
—-5A+B = -1

We solve this system and obtain A =2 and B = 9.

20 — 1 2 9
So our fraction, LZ can be re-written as + 5. We check:

x —5) z—5 (z—05)

2 9 _ 2(z—5) 9 _2z—104+9 2z-—1

t=5 (3-5° (@-5° (@-5° (@-5° (v-5)

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013
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Now we can easily integrate:

2z —1 2 9 1 1 9
dx:/ + dx:2/ dx+9/dac:21nx—5—+0
/@-5)2 r—5  (zx-5)? x5 (z —5)? | 773

Method 2: The values of A and B can be found using a slightly different method as follows. Consider first

the equation
A B 2x — 1

w—5+(x—5)2_(x—5)2

We bring the fractions to the common denominator:

Az —5) B 20 — 1

(z-5)°  (z-5° (z-5)

and then multiply both sides by the denominator:
A(z—5)+B=22—1

The equation above is about two functions; the two sides must be equal for all values of z. Let us substitute
x = 5 into both sides:

A(0)+B =
B =

The other value of z can be arbitrarily chosen. (There is no value that would eliminate B from the equation.)
For easy substitution, let us substitute x = 0 into both sides and also substitute B = 9:

A(-5)+9 = -1
—54 = -10
A = 2

and so A =2 and B =09.
7. /$—|—33 dx
(z—1)

. . . r+3 . . . :
Solution: We re-write the fraction PRSI as a sum (or difference) of fractions with denominators =z — 1,
x —_—

(z —1)% and (z —1)®. This means that we need to solve for A, B, and C' in the equation

A N B N C _z+3
z-1 (z-1° (@-1° (z—-1)°

To simplify the left-hand side, we bring the fractions to the common denominator:

A B C A(z—1)?% B(z—1) C A(x -1 +B(z—1)+C
el @1 @1 @ @1 @o1P (- 1P
B A(:c2—2:1:+1)+B(a:—1)+C_Ax2—2Ax+A+B:c—B+C
- (z—1)° - (@ —1)°
_ Az?*+ (—2A+B)z+A-B+C
- (—1)°
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Thus
Az?+ (—2A+B)z+A—-B+C  z+3

(¢ —1)° (@ —1)°

We clear the denominators by multiplication

Az’ + (—2A+B)z +A-B+C=z+3

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coefficient. We have an equation for each coefficient that gives us a system of linear

equations:
A = 0
—-2A + B =1
A - B 4+ C =

Since A = 0, this is really a system in two variables:

B
-B+C = 3
We solve this system and obtain B =1 and C = 4.
1 4
So our fraction, ———— can be re-written as 5+ 3. We check:
(x—1) (r—1) (r—1)
1 4 1(xz-1) 4 z-1+4 x+3

@12 @1 @1 @1 @1’ @1

Now we can easily integrate:

z+3 - 1 4 L L
/@-1)3 dr = /(x—1)2+($—1)3d /(x—1)2d +4/($—1)3d
1 4‘ 1 1 2

= - - = +C=|— — +C
r—1 2 (z-1)° r—1 (z—1)?
—1(z—-1 2 — 1-2 —r—1

- w 2) s 0= - - +C= - ;g tC
(x—1) (r—1) (x—1) (x—1)

Both final answers are acceptable.

Method 2: The values of A, B, and C' can be found using a slightly different method as follows. Consider

first the equation
A B C T+ 3

:c—1+(x_1)2+(a:—1)3_ (z —1)°

We bring the fractions to the common denominator:

A(x -1 B(z-1) C x+3

@-1°  (@-1° @-1° (@-1)°

and then multiply both sides by the denominator:

A(z—1?+B@x—-1)+C=2+3

The equation above is about two functions; the two sides must be equal for all values of z. Let us substitute
x = 1 into both sides:

A(0)+B0O)+C = 1+3
C = 4

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013



Lecture Notes Partial Fractions page 15

There is no value other than 1 that would eliminate A or B from the equation. Our method will still work.
For easy substitution, let us substitute x = 0 into both sides and also substitute C' = 4:

A(x—1?+B@z-1)+C = z+3
AO0—-124+B0O—-1)+4 = 0+3

A-B+4+4 = 3

A-B = -1

Let us substitute £ = 2 into both sides:

A(x—1?+B@z—-1)+C = z+3
AR-12+B(2-1)+4 = 2+3

A+B+4+4 = 5

A+B =1

We now solve the system of equations
A-B = -1
A+B =1

and obtain A =0 and B = 1. Recall that we already have C' = 4.

4
T
8. /x4_1dx

Solution: This rational function is an improper fraction since the numerator has the same degree as the
denominator. We first perform long division. This one is an easy one; the method featured below is called

smuggling.
xt _x4—1+1_x4—1 1 14 1
x4 —1 x4 —1 zd -1 24-1 x4 —1
Thus
e (e e (14 1 w—a+c L 4
/$4_1 1:—/ +x4—1 x_/ :c+/x4_1 T =+ 1+/$4_1 T

dx.

We apply the method of partial fractions to compute / ra—
4 —

We factor the denominator: z* —1 = (2% +1) (z + 1) (# — 1). Next, we re-write the fraction as a sum

4
4 =
(or difference) of fractions with denominators #2 + 1 and = + 1, and  — 1. In the fraction with quadratic

denominator, the numerator is linear. This means that we need to solve for A and B in the equation
Ax+ B n C n D 1
224+1  z4+1 -1 24-1

To simplify the left-hand side, we bring the fractions to the common denominator:

A$+B+ C n D (Az+B)(x+1)(z—1) C(a?+1)(z—1) D (z? +1) (z+1)
24+1  z4+1 2-1 @2+ (z+D@-1) @+D@+)(@-1) (@2+1)(xz+1)(z-1)

Az 4+ B)(x+1)(x-1)+C(2*+1) (x—1)+ D (2> +1) (z+1)

B zt—1

_ (Az+B) (22— 1)+ C(* —a?+2—-1)+ D (® + 2> + z + 1)

N xt—1

Az’ + Ba? — Az — B+ Ca? — Ca? + Cx — C + Da® + Da? + Dz + D

B zt—1

_ (A+C+D)a*+(B-C+D)z*+(-A+C+D)z—B—-C+D

B xt—1
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Thus
(A+C+D)z*+(B-C+D)a’+(-A+C+D)z—B-C+D 1

xd—1 xd—1

We clear the denominators by multiplication
(A+C+D)x*+(B-C+D)ax*+(-A+C+D)z—B-C+D=1

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coefficient. This gives us an equation for each coefficient that forms a system of linear

equations:
A + C + D =0
B - C + D =0
—A + C + D =0
- B - C + D =1

We will solve this system by elimination. First, we will eliminate A using the first equation. The second
and fourth equations do not have A in them, so there is nothing to do there. To eliminate A from the third
equation, we add the first one to it.

B - C + D =0
2C + 2D =
- B - C + D =1

We now have three equations with three unknowns. We will use the first equation to eliminate B. In case
of the second equation, again, there is nothing to do. We add the first equation to the third one to eliminate

B.
2C 4+ 2D = 0
-2C + 2D =1

1
Adding the two equations eliminates C' and gives us 4D =1 and so D = 1 Next, we compute C' using the

equation
2C04+2D = 0
1
1
¢ =1

We can compute A using the first equation, A+ C + D =0

A+C+D = 0
1 1

A—-4+- =0
4 + 4
A =0
and we can compute B using the second equation,
B-C+D =0

1 1
B—[-= =
(-3)+1 = o

4
B = -=
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Thus A =0, B——f C’——1 andD—1
4’ 4
1 1 1
1 _ - -
So our fraction, —— can be re-written as 2 4 4 4 We check:
-1 22+1 z+1 z-1
1 1 1 1 1 1
2+l 2+l 21 @40+ @+)e@+)@-1) @r)@+)@-1)

—%(3:—1—1)@—1)—%(w2+1)(:n—1)+i(x2+1)(m+1)
(@2+1)(z+1)(xz—1)
—%(ﬁ—l)—l(x?’—:cQ—i-x—l)—i—i(:c:g—i—xz—i—x—i—l)

_ 4
x4 —1
LSPSNE SR USRS UPIRS RIS WS UPINE PSSR
A Y S S R S
4 —1
SN PR U S WP SIS A DS SR
o \UaTa)” 271" 1)" 1T4) Ty
o x4 —1 |

Now we re-write the integral:

1 1

1 —3 1 1 1 1/ 1 1/ 1
de = - de=—= | ——— dz— = do + > d
/w4—1 o /x2+1 sl a1 ™ 2/:):2—|—1 v 4/x+1 $+4/x—1 v

1 1 1
= —§arctanm—Zln\m+1|+11n|x—1|+0
Thus the final answer is

$4
/m4_1das / /1dx+/ _1 dx

= a:—l—Cl—iarctan:z:—fln|x+1|+fln|x—1]—|—02

| 1=

1 1
= x—§arctana:—Zln\x+1\+zln|m—1|+0

Method 2: The values of A, B, C, and D can be found using a slightly different method as follows. Consider

first the equation
Ax+B+ C n D 1
z22+1 41 z—-1 z4-1

We bring the fractions to the common denominator:

(Az+ B) (z +1) (z — 1) C(z*+1) (z—1) D (z2+1)(z+1) 1

@D+ )e-1)  @+De+0e-1) @+De+D@-1) @+)@+1)@-1)

and then multiply both sides by the denominator:

(Az+B)(z+1)(z—1)+C(2*+1)(z—1)+D (2> + 1) (z +1) =1
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The equation above is about two functions; the two sides must be equal for all values of z. Let us substitute
x = —1 into both sides:

(Az+B)(z+1)(z—1)+C (2 +1) (- 1)+ D (2> +1) (z+1) = 1

(A1) + B (D) + 1) (-1) =)+ C (-1 + 1) (=D =)+ D (-1 + 1) (=D +1) = 1
(-A+B)(0)(-2)+C(2)(-2)+D(2)(0) = 1
—4C = 1
c - _1
Let us substitute z = 1 into both sides:
(Az+B)(z+1)(z—1)+C (2*+1) (- 1)+ D (2> +1) (z+1) = 1
AL +B)(()+1)(1-1)+C(1*+1)(1-1)+D(*+1)(1+1) = 1
(A+B)(2)(0)+C(2)(0)+ D(2)(2) 1
4D = 1
1
b=y
Let us substitute z = 0 into both sides and alsoC:—i andD:i:
(Az+B)(z+1)(z—1)+C(*+1)(z—1)+D(@*+1)(z+1) = 1
(A0)+B)((0)+1) (0-1)+C(0*+1)(0—-1)+D(0*+1)(0+1) = 1
B)L) N+ (-H+D(A)1A) = 1
—-B-C+D =1
1 1
—B—<—4>+4 -
Bty =1
B - 1
2
1
B ==
: : . 1 1 1
Let us substitute z = 2 into both sides and alSOB:_i’C:_Z andD—Z
(Az+B)(z+1)(z—1)+C(2*+1)(z—1)+D(z®+ 1) (z+1) = 1
(A2)+B)((2)+1)(2-1)+C(22+1)2-1)+D((2°+1)(2+1) = 1
2A+B)3)(H)+C(B)(1)+D()(3) = 1
3244+ B)+5C+15D = 1
6A+3B+5C+15D = 1

() enl) -

3 5 15

6A+7_6_5+15 =1
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4
6A+- = 1
+4
6A+1 = 1
6A = 0
A =0
1 1 1
andsoA—O,B——§,C——Z,andD—Z.
1 1+sinz
9. [secxdr=—-In|———— |+ C =lIn|secr +tanz| + C = —In|secx — tanz| + C
2 1—sinz

Solution:

1 1 CcoS ¥ CcoS T CoOS T
secx dr = dx = . dx = 3 der = — dx
cosx COST COSX Ccos® T 1 —sin“x

Now let u =sinz. Then du = cos zdz.

/Cosxdx—/lcos:cdx— 1 /1du
1—sin’z ) 1—sin’z S 1—wr ) (—u) (1 +u)
This integral can be computed by partial fractions:
A n B 1
l—uw 14u 1—u?
The left-hand side can be re-written
A n B A(l+uw) N B(1l-uw)  Au+A-Bu+B (A-B)u+A+B
l—u 1+u (I-uw)(I+u) (A+u)(l-u) 1—u? B 1—wu?

So we have
(A—B)u+A+B_ 1

1—u? 1 — 2

We clear the denominators by multiplication
(A-B)u+A+B=1

The equation above is about two polynomials: they are equal to each other as functions and so they must be
identical, coefficint by coeflficient. This gives us an equation for each coefficient that forms a system of linear
equations:

A-B = 0
A+ B =

we solve this system and obtain A = B = Indeed,
2 1

1
2’
1 11—u+1+u 1 B
2 1—|—u QI-w(l+u 21-u2 1-u?

Now for the integral:

1 1 1 1 1 1 1 1 1
/1—u2 du = /(1—u)(1+u) du_/2<1—u+l+u> du_Q/l—udu+2/l+udu

1 1 1 1
= f§1n|17u|+§ln|1+u]+C:§ln|1+u|f§ln|1fu]+0

1 1
= §ln]1+sinx|—§1n|1—sinx|+C
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1
Note the — sign in / T4 du = —1In|1 — u| + C is caused by the chain rule. Aslo note that the final answer
—u

can be re-written in several forms:

11 |1+ sin x| 1l |1 — sinz|
- 3 - — S =
B n ST 9 n 1N T

1. |1+sinx 1. |1+sinz 1+4sinzx 1. |(1+sinz)? 1. |(1+sinz)?
= —In|——|=-In - . - :flni.zzflni
1 —sinz 2 1l—sinz 1+sinx 2 1 —sin“x 2 cos? x
1 sinx

= In[secx + tan z|

cos2 x cos2 x cos x coOST COSX

. 9\ 1/2 . 9 .
. <(1—i—sm:n)> I (1 + sinx) ln‘l—ksmx

So, our result can also be presented as ’1n |secz + tan x| + C ‘

Another form can be obtained as shown below.

Ll 4 sing|— 21— sing| =
2 n SInN T 2 n SIxr| =

1 1+sinz 1 l1+sinz 1-sinx 1 1 —sin’x 1 cos? x

= -In|————|=-In — - - =-Inj————|=;n 5

1—sinz 2 l1—-sinz 1-sinx 2 (1 —sinx) 2 (1 —sinx)

cos? 1/2 cos? x CoS T 1

== h’l . o :ln 72:111 | = 0

(1 —sinx) (1 —sinx) 1 —sinz 1 —sinz

cosx

1—sinz) ! 1 sinz|
= In|{—— =In — = —In|secz — tan x|

cosx COST  COST

So, our result can also be presented as ’ —In|secz — tanz| + C ‘ Actually, there are more forms possible, but

we will stop here.
10. / cschz dx

Solution: This is an interesting application of partial fractions.

/cschxda::/l?_xdac:/ 21da:
et —e b

edf

we now multiply both numerator and denominator by e*.
2 2e”
J I
0T _ (e*)" —1
62?

We proceed with a substitution: let u = e”. Then du = e*dx and so

/@&i4ww@:/wi1“

(© copyright Hidegkuti, Powell, 2012 Last revised: February 24, 2013



Lecture Notes Partial Fractions page 21

2
This is now an integral we can easily compute via partial fractions. We easily decompose — as
u2 —
1 1
u—1 wu+1

2 1 1 1 1
/csc x dx /u2_1du /(u—l u+1>du /u—ldu /u+1du nlu—1—-Inju+ 1]+ C

= ’ln]e“—l]—ln(e‘”—i—l)—l—C‘

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture
Notes. E-mail questions or comments to mhidegkuti@ccc.edu.
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