Elipse as unit circle with respect to some distance

A. Chandrashekaran

Department of Mathematics Central University of Tamil Nadu, Thiruvarur

August 22, 2024

Abstract

In this geogebra activity we compare a distance induced by an inner product with the usual distance on the Euclidean plane (also induced by the standard dot product on \mathbb{R}^2).

Keywords: Dot product \cdot Inner product \cdot distance induced by inner product \cdot Euclidean distance \cdot circles with different distances

2020 Mathematics Subject Classification: $26A42 \cdot 97D40 \cdot 97G30$

1 Introduction

In this geogebra activity we consider the distance introduced by the following inner products on \mathbb{R}^2 . Let $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. We define $\langle (x_1, y_1), (x_2, y_2) \rangle$: $= x_1y_1 + x_2y_2$ and $\langle (x_1, y_1), (x_2, y_2) \rangle_A$: $= x_1y_1 + x_2y_2 + \frac{1}{2}x_1y_2 + \frac{1}{2}x_2y_1$. Note that the $\langle \cdot, \cdot \rangle$ is the usual dot product and it satisfies the axioms of an inner product. The inner product $\langle \cdot, \cdot \rangle_A$ is defined by the positive definite matrix $A = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}$ as $\langle u, v \rangle_A = u^T A v$ for all $u, v \in \mathbb{R}^2$.

Let us consider the norms $||(x,y)|| = \sqrt{x^2 + y^2}$ and $||(x,y)||_A = \sqrt{x^2 + y^2 + xy}$. Therefore the unit circle defined by the these distances are $C_1 = \{(x,y) \in \mathbb{R}^2 | ||(x,y)|| = 1\}$ and $C_2 = \{(x,y) \in \mathbb{R}^2 | ||(x,y)||_A = 1\}$. That is

$$C_1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$$
 and $C_2 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 + xy = 1\}.$

Now look at the geogebra activity and observe that the green circle is C_1 and the purple elipse is the circle C_2 . The red coloured ellipsoid is the proof that $\langle \cdot, \cdot \rangle_A$ is an inner product. That is $\langle (x, y), (x, y) \rangle_A = 0$ if and only if (x, y) = (0, 0). This can also be seen analytically. That is $\langle (x, y), (x, y) \rangle_A = x^2 + y^2 + xy = x^2 + \frac{y^2}{4} + xy + \frac{3y^2}{4} = (x + \frac{y}{2})^2 + \frac{3y^2}{4} \ge 0$. Further $(x + \frac{y}{2})^2 + \frac{3y^2}{4} = 0$ if and only if (x, y) = (0, 0).