INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.20] INTEGRATION BY PARTS

Compiled by Christos Nikolaidis

Ο.	Practice	questions

1.		imum mark: 16]			
	Find	$I_1 = \int 2x e^x dx ,$	$I_2 = \int 2x \cos x \mathrm{d}x \ ,$	$I_3 = \int 2x \sin x \mathrm{d}x,$	$I_4 = \int 2x \ln x \mathrm{d}x$

2 .	[Maxi	mum mark: 10]	[without GD	C]			
	Find	$I_1 = \int (3x^2 + 4x + 4$	$-1)\cos x dx$,	$I_2 = \int (3x^2 + 4x^2)$	$(x+1) \ln x dx$		
						•••••	
							•••••

	$a = \int c \cos 2x dx$	by using integration by parts in two different ways:
ME.	THOD A: by integrat	ting e^{2x} first.
ΛE ⁻	THOD B: by integra	
ΛE.	THOD B: by integra	ating $\cos 2x$ first.
ΛE	THOD B: by integra	
ΛE	THOD B: by integra	
ΛE	THOD B: by integra	
ME.		
ΜE		ating $\cos 2x$ first.
ИE [.]		ating $\cos 2x$ first.
ΛE.		ating $\cos 2x$ first.
ΛE.		ating $\cos 2x$ first.
ΛE.		ating $\cos 2x$ first.
ΛE.		ating $\cos 2x$ first.
ΛE.		ating $\cos 2x$ first.
ИE.		ating $\cos 2x$ first.
ΛE.		ating $\cos 2x$ first.

a)	Find I_0 .
	Express I_n in terms of I_{n-1} by using integration by parts.
c)	Find I_1 , I_2 and I_3 by using the recursive relation found above. Express the
	results in the form $I_n = p(x)e^x + c$, where $p(x)$ is a polynomial.

5.

	ximum mark: 12] [without GDC] sider $I = \int 4\sin x \cos x dx$		
(a) (b)	Find I by using (i) the substitution $u = \sin x$. (iii) the double angle formula for $\sin 2\theta$. Explain the difference in the results.	(ii) the substitution $u = \cos x$. (iv) integration by parts.	[10] [2]
			•
			•
			•
			•

6.	[Maximum mark: 12] [without GDC]
	Calculate the definite integral $I = \int_{0}^{1} (3x+2)e^{x}dx$
	METHOD A: Find the definite integral first and then the definite (preferable!)
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.

A. Exam style questions (SHORT)

7.	[Maximum mark: 6]	[without GDC]	
	Find $\int (\theta \cos \theta - \theta) d\theta$.		
8.	[Maximum mark: 6]	[without GDC]	
8.		[without GDC]	
8.	[Maximum mark: 6] Find $\int \frac{\ln x}{\sqrt{x}} dx$.	[without GDC]	
8.		[without GDC]	
8.		[without GDC]	
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.	[without GDC]	
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		

9.	[Max	imum mark: 6]	[without GDC]
	Find	$\int e^x \cos x dx .$	
10.	[Max	imum mark: 6]	[without GDC]
		$\int e^{2x} \sin x dx.$	

11*.	[Max	rimum mark: 7] [without GDC]
	Let	$f(x) = x \ln x - x , \ x > 0 .$
	(a)	Find $f'(x)$.
	(b)	Using integration by parts, find $\int (\ln x)^2 dx$. [4]
12.		ximum mark: 6] <i>[without GDC]</i> $\int \arctan x dx$.
	1 1110	Juroun xux.

13*.	[Max	imum mark: 6]	[without GDC]
	Find	$\int 2x \arctan x dx.$	
1/1*	[May	imum mark: 61	[without GDC]
			[without GDG]
	Find	$\int \frac{x^2}{e^{2x}} dx.$	
		• e ^{2x}	

15.	[Max	ximum mark: 6] [with / without GDC]
	(a)	Use integration by parts to find $\int x^2 \ln x dx$.
	(b)	Evaluate $\int_{1}^{2} x^2 \ln x dx$
16.		ximum mark: 5] [without GDC]
	Calc	culate the exact value of $\int_1^e x^5 \ln x dx$

17.	[Maximum mark: 6]	[without (GDC]
	Show that $\int_0^{\frac{\pi}{6}} x \sin 2x dx$	$dx = \frac{\sqrt{3}}{8} - \frac{\pi}{24}$	$\frac{\mathfrak{r}}{4}$.
18.	[Maximum mark: 7]	[without (GDCJ
	Find $\int_0^a \arcsin x dx$, 0 <	< a < 1.	

19. [Maximum mark: 14] <i>[</i>	without GDC]
--	--------------

(a) Find
$$I_n = \int x^n \ln x dx$$
 in terms of n , where $n \in \mathbb{R}$, $n \ne -1$. [4]

(b) Find
$$J_n = \int \frac{(\ln x)^n}{x} dx$$
 in terms of n , where $n \in \mathbb{R}$. [3]

(c) Hence find

(i)
$$\int \sqrt{x} \ln x dx$$
, (ii) $\int \frac{\sqrt{\ln x}}{x} dx$, (iii) $\int \left(\frac{\ln x}{x^2} + \frac{(\ln x)^2}{x}\right) dx$. [7]

\mathcal{A}	(1	λ)	

20.	D. [Maximum mark: 16] <i>[without GDC]</i>		
	Let $A_n = \int x^n \sin x dx$ and $B_n = \int x^n \cos x dx$		
	(a)	Find A_0 and B_0 .	[2]
	(b)	Express A_n in terms of B_{n-1} by using integration by parts.	[2]
	(c)	Express B_n in terms of A_{n-1} by using integration by parts.	[2]
	(d)	Hence express	
		(i) A_n in terms of A_{n-2} .	
		(ii) B_n in terms of B_{n-2} .	[5]
	(e)	Find A_1 , A_2 and A_3 by using the results above.	[5]

21.

	ximum mark: 28]	
Let	$I_n = \int \sin^n x dx$	
(a)	Find I_0 and I_1 .	[4]
(b)	Express I_n in terms of I_{n-2} by using integration by parts.	[4]
(c)	Find I_2 , I_3 , I_4 , I_5 by using the recursive relation found in (b).	[4]
(d)	Find I_2 , I_4 by using the double angle formula $\sin^2 x = \frac{1 - \cos 2x}{2}$.	[8]
(e)	Find I_3 , I_5 by using the substitution $u = \cos x$	[8]

NOTICE

The following table is from my lecture notes.

Please make sure that you are able to solve all the examples in column 2 and the theoretical questions in column 3.

General Form	Examples	Theoretical Questions	
$I_n = \int x^n e^x dx$	∫x³e×dx,	Express I_n in terms of I_{n-1}	
$I_{n,m} = \int x^n e^{mx} dx$	$\int x^2 e^{3x} dx$	Hence find l_0, l_1, l_2, \dots	
$I_n = \int x^n cosx dx$	[2.a.ad		
$I_n = \int x^n \sin x dx$	∫x²cosxdx	Express I_n in terms of I_{n-2}	
$I_{n,m} = \int x^n \cos(mx) dx$			
$I_{n,m} = \int x^n \sin(mx) dx$	∫x²cos3xdx		
I Control	$\int x^{s} \ln x dx$, $\int \frac{\ln x}{x^{s}} dx$	Find a second formula for I	
$I_n = \int x^n \ln x dx$	$\int \sqrt{x} \ln x dx$	Find a general formula for I _n	
$I_{n,m} = \int e^{nx} \sin(mx) dx$	∫e³×sin2xdx	5. 1	
$I_{n,m} = \int e^{nx} \cos(mx) dx$	∫e-×sin2xdx	Find a general formula for $I_{n,m}$	
$I_n = \int cos^n x dx$	∫cos²xdx	Express I_n in terms of I_{n-2}	
$I_n = \int \sin^n x dx$	∫cos³xdx	Hence find l_2 , l_4 and l_3 , l_5	
$I_{n,m} = \int \sin(nx)\cos(mx)dx$	∫sin2xcos3xdx	Find a general formula for I _{n,m}	
$I_n = \int x^n \operatorname{arctan} x dx$	\[\int arctanxdx \int x^2 arctanxdx \]		
$I_n = \int x^n arcsinx dx$			
$I_n = \int x^n arccosxdx$	∫arcsinxdx , ∫x²ard	csinxax	
$I_n = \int (\ln x)^n dx$	$\int (\ln x)^2 dx \int (\ln x)^3 dx$		