INTERNATIONAL BACCALAUREATE # Mathematics: analysis and approaches # MAA # EXERCISES [MAA 5.20] INTEGRATION BY PARTS Compiled by Christos Nikolaidis | Ο. | Practice | questions | |----|----------|-----------| | | | | | 1. | | imum mark: 16] | | | | |----|------|--------------------------|--|-------------------------------------|-----------------------------------| | | Find | $I_1 = \int 2x e^x dx ,$ | $I_2 = \int 2x \cos x \mathrm{d}x \ ,$ | $I_3 = \int 2x \sin x \mathrm{d}x,$ | $I_4 = \int 2x \ln x \mathrm{d}x$ | 2 . | [Maxi | mum mark: 10] | [without GD | C] | | | | |------------|-------|---|------------------|----------------------------|------------------|-------|-------| | | Find | $I_1 = \int (3x^2 + 4x 4$ | $-1)\cos x dx$, | $I_2 = \int (3x^2 + 4x^2)$ | $(x+1) \ln x dx$ | | | | | | | | | | | | | | | | | | | ••••• | ••••• | $a = \int c \cos 2x dx$ | by using integration by parts in two different ways: | |-----------------|-------------------------|--| | ME. | THOD A: by integrat | ting e^{2x} first. | ΛE ⁻ | THOD B: by integra | | | ΛE. | THOD B: by integra | ating $\cos 2x$ first. | | ΛE | THOD B: by integra | | | ΛE | THOD B: by integra | | | ΛE | THOD B: by integra | | | ME. | | | | ΜE | | ating $\cos 2x$ first. | | ИE [.] | | ating $\cos 2x$ first. | | ΛE. | | ating $\cos 2x$ first. | | ΛE. | | ating $\cos 2x$ first. | | ΛE. | | ating $\cos 2x$ first. | | ΛE. | | ating $\cos 2x$ first. | | ΛE. | | ating $\cos 2x$ first. | | ИE. | | ating $\cos 2x$ first. | | ΛE. | | ating $\cos 2x$ first. | | a) | Find I_0 . | |----|---| | | Express I_n in terms of I_{n-1} by using integration by parts. | | c) | Find I_1 , I_2 and I_3 by using the recursive relation found above. Express the | | | results in the form $I_n = p(x)e^x + c$, where $p(x)$ is a polynomial. | 5. | | ximum mark: 12] [without GDC] sider $I = \int 4\sin x \cos x dx$ | | | |------------|---|--|-------------| | (a)
(b) | Find I by using (i) the substitution $u = \sin x$. (iii) the double angle formula for $\sin 2\theta$. Explain the difference in the results. | (ii) the substitution $u = \cos x$.
(iv) integration by parts. | [10]
[2] | • | • | • | | | | | | | | | | • | | | | | | | | | | | | | | | | | 6. | [Maximum mark: 12] [without GDC] | |----|---| | | Calculate the definite integral $I = \int_{0}^{1} (3x+2)e^{x}dx$ | | | METHOD A: Find the definite integral first and then the definite (preferable!) | METHOD B: Apply integration by parts on the definite integral, keeping the limits. | | | METHOD B: Apply integration by parts on the definite integral, keeping the limits. | | | METHOD B: Apply integration by parts on the definite integral, keeping the limits. | | | METHOD B: Apply integration by parts on the definite integral, keeping the limits. | | | METHOD B: Apply integration by parts on the definite integral, keeping the limits. | | | METHOD B: Apply integration by parts on the definite integral, keeping the limits. | | | | | | | | | | | | | | | | # A. Exam style questions (SHORT) | 7. | [Maximum mark: 6] | [without GDC] | | |----|---|---------------|--| | | Find $\int (\theta \cos \theta - \theta) d\theta$. | 8. | [Maximum mark: 6] | [without GDC] | | | 8. | | [without GDC] | | | 8. | [Maximum mark: 6] Find $\int \frac{\ln x}{\sqrt{x}} dx$. | [without GDC] | | | 8. | | [without GDC] | | | 8. | | [without GDC] | | | 8. | Find $\int \frac{\ln x}{\sqrt{x}} dx$. | [without GDC] | | | 8. | Find $\int \frac{\ln x}{\sqrt{x}} dx$. | | | | 8. | Find $\int \frac{\ln x}{\sqrt{x}} dx$. | | | | 8. | Find $\int \frac{\ln x}{\sqrt{x}} dx$. | | | | 8. | Find $\int \frac{\ln x}{\sqrt{x}} dx$. | | | | 8. | Find $\int \frac{\ln x}{\sqrt{x}} dx$. | | | | 8. | Find $\int \frac{\ln x}{\sqrt{x}} dx$. | | | | 8. | Find $\int \frac{\ln x}{\sqrt{x}} dx$. | | | | 9. | [Max | imum mark: 6] | [without GDC] | |-----|------|--------------------------|---------------| | | Find | $\int e^x \cos x dx .$ | 10. | [Max | imum mark: 6] | [without GDC] | | | | $\int e^{2x} \sin x dx.$ | 11*. | [Max | rimum mark: 7] [without GDC] | |------|--------|--| | | Let | $f(x) = x \ln x - x , \ x > 0 .$ | | | (a) | Find $f'(x)$. | | | (b) | Using integration by parts, find $\int (\ln x)^2 dx$. [4] | 12. | | ximum mark: 6] <i>[without GDC]</i> $\int \arctan x dx$. | | | 1 1110 | Juroun xux. | 13*. | [Max | imum mark: 6] | [without GDC] | |------|------|-------------------------------|---------------| | | Find | $\int 2x \arctan x dx.$ | 1/1* | [May | imum mark: 61 | [without GDC] | | | | | [without GDG] | | | Find | $\int \frac{x^2}{e^{2x}} dx.$ | | | | | • e ^{2x} | 15. | [Max | ximum mark: 6] [with / without GDC] | |-----|------|--| | | (a) | Use integration by parts to find $\int x^2 \ln x dx$. | | | (b) | Evaluate $\int_{1}^{2} x^2 \ln x dx$ | 16. | | ximum mark: 5] [without GDC] | | | Calc | culate the exact value of $\int_1^e x^5 \ln x dx$ | 17. | [Maximum mark: 6] | [without (| GDC] | |-----|---|--|----------------------------| | | Show that $\int_0^{\frac{\pi}{6}} x \sin 2x dx$ | $dx = \frac{\sqrt{3}}{8} - \frac{\pi}{24}$ | $\frac{\mathfrak{r}}{4}$. | 18. | [Maximum mark: 7] | [without (| GDCJ | | | Find $\int_0^a \arcsin x dx$, 0 < | < a < 1. | 19. [Maximum mark: 14] <i>[</i> | without GDC] | |--|--------------| |--|--------------| (a) Find $$I_n = \int x^n \ln x dx$$ in terms of n , where $n \in \mathbb{R}$, $n \ne -1$. [4] (b) Find $$J_n = \int \frac{(\ln x)^n}{x} dx$$ in terms of n , where $n \in \mathbb{R}$. [3] (c) Hence find (i) $$\int \sqrt{x} \ln x dx$$, (ii) $\int \frac{\sqrt{\ln x}}{x} dx$, (iii) $\int \left(\frac{\ln x}{x^2} + \frac{(\ln x)^2}{x}\right) dx$. [7] | \mathcal{A} | (1 | λ) | | |---------------|-----|-----|--| | | | | | |
 20. | D. [Maximum mark: 16] <i>[without GDC]</i> | | | |-----|---|--|-----| | | Let $A_n = \int x^n \sin x dx$ and $B_n = \int x^n \cos x dx$ | | | | | (a) | Find A_0 and B_0 . | [2] | | | (b) | Express A_n in terms of B_{n-1} by using integration by parts. | [2] | | | (c) | Express B_n in terms of A_{n-1} by using integration by parts. | [2] | | | (d) | Hence express | | | | | (i) A_n in terms of A_{n-2} . | | | | | (ii) B_n in terms of B_{n-2} . | [5] | | | (e) | Find A_1 , A_2 and A_3 by using the results above. | [5] | 21. | | ximum mark: 28] | | |-----|---|-----| | Let | $I_n = \int \sin^n x dx$ | | | (a) | Find I_0 and I_1 . | [4] | | (b) | Express I_n in terms of I_{n-2} by using integration by parts. | [4] | | (c) | Find I_2 , I_3 , I_4 , I_5 by using the recursive relation found in (b). | [4] | | (d) | Find I_2 , I_4 by using the double angle formula $\sin^2 x = \frac{1 - \cos 2x}{2}$. | [8] | | (e) | Find I_3 , I_5 by using the substitution $u = \cos x$ | [8] | #### **NOTICE** The following table is from my lecture notes. Please make sure that you are able to solve all the examples in column 2 and the theoretical questions in column 3. | General Form | Examples | Theoretical Questions | | |---|---|---|--| | $I_n = \int x^n e^x dx$ | ∫x³e×dx, | Express I_n in terms of I_{n-1} | | | $I_{n,m} = \int x^n e^{mx} dx$ | $\int x^2 e^{3x} dx$ | Hence find l_0, l_1, l_2, \dots | | | $I_n = \int x^n cosx dx$ | [2.a.ad | | | | $I_n = \int x^n \sin x dx$ | ∫x²cosxdx | Express I_n in terms of I_{n-2} | | | $I_{n,m} = \int x^n \cos(mx) dx$ | | | | | $I_{n,m} = \int x^n \sin(mx) dx$ | ∫x²cos3xdx | | | | I Control | $\int x^{s} \ln x dx$, $\int \frac{\ln x}{x^{s}} dx$ | Find a second formula for I | | | $I_n = \int x^n \ln x dx$ | $\int \sqrt{x} \ln x dx$ | Find a general formula for I _n | | | $I_{n,m} = \int e^{nx} \sin(mx) dx$ | ∫e³×sin2xdx | 5. 1 | | | $I_{n,m} = \int e^{nx} \cos(mx) dx$ | ∫e-×sin2xdx | Find a general formula for $I_{n,m}$ | | | $I_n = \int cos^n x dx$ | ∫cos²xdx | Express I_n in terms of I_{n-2} | | | $I_n = \int \sin^n x dx$ | ∫cos³xdx | Hence find l_2 , l_4 and l_3 , l_5 | | | $I_{n,m} = \int \sin(nx)\cos(mx)dx$ | ∫sin2xcos3xdx | Find a general formula for I _{n,m} | | | $I_n = \int x^n \operatorname{arctan} x dx$ | \[\int arctanxdx \int x^2 arctanxdx \] | | | | $I_n = \int x^n arcsinx dx$ | | | | | $I_n = \int x^n arccosxdx$ | ∫arcsinxdx , ∫x²ard | csinxax | | | $I_n = \int (\ln x)^n dx$ | $\int (\ln x)^2 dx \int (\ln x)^3 dx$ | | |