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Focus East Asia 

A Classic from China: The Nine Chapters 
 

             by Prof. Randy Schwartz 

 

he Beijing Olympics last August riveted the planet’s 

attention on China as a rising power. Not only were the 

athletic events themselves exciting to watch, but the opening and 

closing ceremonies were also dramatic, giving people a sense of 

China’s immensely long history and its big role in the world. 

Schoolcraft’s International Institute, through its Focus East Asia 

project this year, has organized speakers, films, and other 

activities to help us learn more about this important region. 
 

In mathematics and other sciences, China has also played an 

advanced world role. This is not a new development. In fact, the 

Needham Research Institute in Cambridge, England has been 

working for decades to summarize the rich history of China’s 

contributions to science and technology. So far, the summary 

occupies over 20 large published volumes; volume 3 is on 

mathematics. 
 

This article is about the most important mathematical work in 

China’s long history, the Jiuzhang Suanshu (“Nine Chapters on 

the Art of Calculation”). The book was used throughout China for 

centuries, and it also circulated in Korea and Japan, influencing 

mathematics there. The author(s) and date of the work are no 

longer known, but clues in the text— including the units used in 

story problems— indicate that it was probably written shortly 

after 200 BC. The original version of the Nine Chapters presented 

rules and algorithms but without formal proof or derivation. 

Later, in the year 263 AD, the mathematician Liu Hui provided a 

written commentary that included justification for the techniques 

used. 
 

Looking over portions of the Nine Chapters, and solving 

some of the story problems in it, is a good way to see how the 

development of mathematics in Asia was shaped by how life and 

society were organized there. Life in the West and in the East 

have had similarities and differences, so we can expect that the 

mathematics of these two cultures will also have some similarities 

and some differences. 
 

Below, I’ll provide some background about the book and 

then present 10 story problems from it. I challenge you, the 

reader, to solve as many of the problems as you can (see 

Challenge to Our Readers, page 12). All 10 problems are drawn 

from the edited translation by Shen Kangshen et al. (1999). 
 

The Nine Chapters versus the Elements 
 

Of the works considered China’s Ten Mathematical Classics, 

the Nine Chapters is the oldest and the most influential. Like 

Euclid’s Elements in the West, it was used as a basic textbook for 

mathematics from ancient times all the way to 1600 AD and even 

later. 
 

Comparing these two works, we can’t help but notice some 

differences between the roots of Eastern and Western 

mathematics—  The Nine Chapters was focused more on practical problem- 

solving than on theory. It is a how-to manual consisting of 

246 exemplary problems and their solutions. After a few 

problems of a given type were solved, the general method of 

solution was summarized. By contrast, the Elements was a 

rigorous development of the structure of geometry and some 

related fields, with theorems built up in a careful manner 

from a foundation consisting of basic “elements” (axioms 

and postulates). The style of the Nine Chapters was 

inductive; the Elements, deductive.  In ancient times, Asians were far more adept at arithmetic 

than were Westerners. The Nine Chapters used decimal 

place-value arithmetic at a time when Europeans were still 

using Roman numerals or other cumbersome systems. The 

ancient Chinese were also the first to use negative numbers, a 

practice not adopted in Europe until the 1400’s. The Chinese 

word for mathematics, suanshu, that appears in the title of the 

Nine Chapters, literally means “the art of calculation”.  The study of prime numbers, factorization, and other topics 

in number theory, which was an important part of the 

Elements and of ancient Greek mathematics, was not taken 

up in traditional Chinese mathematics. For example, in China 

the greatest common divisor of two numbers was found not 

by factoring, but by a process of repeated subtraction that 

was also described by Euclid.  Centuries before other peoples, the Chinese developed 

algorithms for solving linear problems, including matrix 

methods and techniques of excess and deficit. 
 

How much Chinese mathematics was rooted in practical 

problem-solving is reflected in the nine chapter subjects of the 

Jiuzhang Suanshu. The chapters correspond to the nine 

arithmetical arts of Chinese tradition: 
 

Chapt. 1 “Field Measurement”— calculating the areas of various 

shapes of farming plots such as triangles, rectangles, and 

circles (using an accurate approximation of pi), plus 

arithmetical rules for fractions and greatest common divisors. 

Chapt. 2 “Millet and Rice”— using ratios and proportions in the 

commercial exchange of different kinds of grains and other 

products. 

Chapt. 3 “Distribution by Proportion”— subdividing quantities by 

direct, inverse, or compound proportion, plus a discussion of 

arithmetic and geometric progressions. 

Chapt. 4 “What Width?”— calculating an unknown dimension of 

a rectangle or rectangular solid if the area or volume is 

known, including how to find reciprocals , square roots, and 

cube roots of various types of numbers. 

Chapt. 5 “Construction Consultations”— finding the areas and 

volumes of shapes and solids used in designing buildings and 

other structures. 

Chapt. 6 “Fair Levies”— proportionally distributing wages and 

taxes, continuing Chapter 3. 

Chapt. 7 “Excess and Deficit”— solving linear equations with 

arithmetical algorithms and without algebra. 

Chapt. 8 “Rectangular Grids”— using matrices to solve 

simultaneous linear equations. 

Chapt. 9 “Right Triangles”— solving practical geometric 

problems using properties of right triangles, and quadratic 

equations by an adaptation of the square-root algorithm. 
  

T 
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For centuries, the Nine Chapters was used to train civil 

servants in the prestigious imperial bureaucracy. This was 

consistent with Chinese philosophical traditions, in which 

intellectuals were supposed to use their skills to benefit society in 

practical ways. For example, a line of hereditary state officials 

called chouren was specifically charged with “reading the 

heavens” (studying astronomy) and doing the calculations needed 

to make calendars, which were so important in this agrarian 

society. The chouren’s routine need for various kinds of 

approximations stimulated the development of algorithms that 

utilized fractional and signed numbers. The word chouren came 

to mean both “astronomers” and “mathematicians”. (Yăn and 

Shírán, pp. 22-24, 32, 48-49, 232) 
 

Decimal Numbers 
 

One of the first things that leaps out at you when you 

examine the Nine Chapters is that although it’s an ancient work, 

it uses a “modern” decimal number system. 
 

Decimal numeration arose, along with the earliest writing of 

Chinese characters, during the transition from slave-ownership to 

feudalism. In China this transition occurred during the Spring and 

Autumn (770-476 BC) and the Warring States (475-221 BC) 

periods, a time when the most advanced societies in Europe were 

those of Greece and Rome still based on slavery. Later, in 

medieval times, decimal place-value numeration diffused outward 

from Asia, spreading from India through the Middle East and 

North Africa to Europe. 
 

The Chinese counting board is a good example of how a 

technological invention can influence how science develops, and 

even how people think. The counting board, in use by 400 BC, 

was made of polished wood and had rulings that formed a grid of 

square cells (see illustration on this page). Since Chinese 

characters are written in columns, proceeding from right to left, it 

was natural to adapt such columns to represent numbers 

according to their units, tens, hundreds, etc., from right to left. 

Each of the digits 1 through 9 was represented by its own Chinese 

character made with tally-like strokes. These digit characters were 

formed easily with counting rods (chousuan), which were small 

bamboo sticks having a square or triangular cross-section, and 

varnished with lacquer. Rods with a red dot were used for positive 

numbers, and those with a black dot for negative numbers. To 

“write” a number on the counting board, its digit characters could 

be placed, one per cell, on one row of the grid. (A blank cell stood 

for what we would call the zero digit.) To do an arithmetic 

problem, two or more numbers could be placed on neighboring 

rows, and the results calculated on successive rows of the board, 

much as we might do today in working a lengthy addition or 

multiplication on paper. 
 

You can see how a merchant or a scholar who started doing 

arithmetic on such a board would quickly acquire the mental habit 

of breaking quantities into their components column-by-column. 

This became ingrained into Chinese culture. The abacus, which 

wasn’t widely used in East Asia until medieval times, retained the 

decimal place-value system in its columns of beads. 
 

For more permanent records, numerals and other characters 

could also be written directly on plain strips of bamboo or on 

bone, tortoise shell, silk fabric, or paper, the latter invented in 

China in the First Century AD. (Paper, silk fabric, and lacquer 

were all Chinese inventions.) 

 

 

 
No old drawings of counting boards survive from China, but this 
drawing from 18th-Century Japan shows that the boards were 
introduced into that country. Drawing from Shen et al., p. 14. 

 
System of Units 

 

The decimal number system also influenced Chinese units of 

measurement. 
 

In 221 BC the ruler Shi Huangdi, based in the Wei Valley, 

had quickly conquered several nearby warring states and unified 

the region, ushering in China’s first empire, the Qin Dynasty 

(221-201 BC). The Great Wall was completed under the Qin 

dynasty. To help ensure the administrative efficiency and cultural 

unity needed in the empire, the government imposed a standard 

system of characters for writing as well as a standard system of 

units for measurement. Thus, China’s uniform system of units 

was due to the early centralization of its political rule. 
 

The units adopted in the Qin and later dynasties included 

those for length, based on the zhang, approximately 7½ feet: 
 

1 zhang = 10 chi = 100 cun; 

for longer distances, the li or “Chinese mile” was used, equal to 

180 zhang. 
 

Units of area were applied particularly for measuring farm 

plots, where a man’s “pace” or bu (60 cun) was a handy 

reference. The units of area were as follows: 
 

1 qing = 100 mu = 24,000 square bu; 

the qing was equivalent to about 11.4 of our acres. 
 

Units of volume: 

1 hu = 10 dou = 100 sheng; 

the hu was equivalent to about 5.3 of our gallons. 
 

Units of weight: 

1 jin = 16 liang = 384 zhu; 

the jin was equivalent to a little over 7 of our ounces. 

 

Ratio and Proportion 
 

Many of the problems in the early chapters of Jiuzhang 

Suanshu are simple ones involving ratios and proportions. They 

were designed to give the reader practice with the system of units, 

the use of basic arithmetic (including fractions), and the Rule of 

Three. The latter rule, versions of which were used in many world 

regions in ancient and medieval times, allows an unknown 

quantity to be calculated if it stands in a proportion with three 

known quantities. The following sample problems, drawn from 

Chapters 2 and 3, respectively, deal with quantities of lacquer and 

woven silk, classic products of China. 
continued on next page
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The Nine Chapters                         continued from page 9 
 

Now pay 5785 coins to purchase 1 hu 6 dou 7 2/3 sheng of 
lacquer. Tell: how much is 1 dou? (Shen et al., p. 151) 

 

Now given 1 jin of silk costs 240 coins. Tell: given 1328 
coins, how many jin of silk are obtained? (Shen et al., p. 
169) 
 

Your answer to Problem 2 should be given exactly, in units of jin, 

liang, zhu, and fractions of a zhu. 
 

Small Plots and Huge Granaries 
 

In feudal times, agricultural production was the main source 

of wealth. The vast majority of the people were poor peasants. 

They paid for things not with coins but with portions of their 

harvest, especially quantities of grain. 
 

In China, millet was the most common grain, especially in 

the north. Rice was a comparative luxury enjoyed mostly by the 

upper classes, for it “takes a whole village” to tend the young 

shoots of rice, keep the paddies flooded, and manage the harvest. 
 

Most peasants worked small plots of land owned by a 

landlord. In exchange, they were required every year to give the 

landlord a certain portion of the grain harvest, known as rent. 

This practice is reflected in another problem from Chapter 3 

involving proportions: 
 

Now given a field of 1 mu, 6 2/3 sheng of millet is collected 
[as rent]. Tell: given 1 qing 26 mu 159 [square] bu of field 
how much millet is collected? (Shen et al., p. 171)  
 

Millet or other grains were also used to pay taxes to the 

central authorities every year. These taxes went to enrich the 

emperor and his court in the capital; to the network of local 

officials and military troops stationed across the empire and on its 

frontiers; and to government granaries that were maintained for 

times of famine. The sheer task of transporting tax grains to 

central repositories was a gargantuan one, but it was meted out 

proportionally to the various localities according to a system 

called junshun (“fair levies”). Localities might be levied in direct 

proportion to their number of households, in inverse proportion to 

their distance to the central bureau, and/or in inverse proportion to 

the local cost of grain. In solving problems such as the following, 

which is the first one in Chapter 6, rounding of the answers is 

necessary, since the carts used to transport grain taxes were 

always filled to capacity. 
 

Now given the task of transporting tax millet is distributed 
among four counties. County A, 8 days from the tax 
bureau, has 10,000 households; County B, 10 days from 
the bureau, has 9,500 households; County C, 13 days from 
the bureau, has 12,350 households; County D, 20 days 
from the bureau, has 12,200 households. The total tax 
millet is 250,000 hu needing 10,000 carts. Assume the task 
is to be distributed in accordance with the distance from the 
bureau and the number of households. Tell: how much 
millet should each county transport? How many carts does 
each county employ? (Shen et al., p. 310) 
 

The following problem from the same chapter deals with 

shipments of millet to Taicang, the national granary. This granary 

was located in Ch’ang-an (now called Xi’an), the first capital of 

China, completed during the Han Dynasty (206 BC – 220 AD). 

The source of the millet is Shanglin, the old Imperial Garden of 

the Qin Dynasty, lying to the west of Ch’ang-an. The problem 

amounts to finding the travel distance between these two sites. 
 

 

Now someone transports provisions between two posts. An 
unloaded cart travels 70 li a day and a loaded one 50 li a 
day. Transporting millet from the National Granary to 
Shanglin. One makes 3 round trips in 5 days, how far is the 
distance between the two posts? (Shen et al., p. 325) 
 

Too Much and Not Enough 
 

Chapter 7 of the Nine Chapters is devoted to the use of a 

technique called ying bu tsu shu (literally “the rule of too much 

and not enough”), often translated as “the method of excess and 

deficit”. The technique amounts to a way of dealing with linear 

relationships without the use of algebra. Chinese mathematicians 

were ingenious in applying it to solve many different types of 

problems, even nonlinear problems solved by linear 

approximation. 
 

The thinking behind ying bu tsu shu was influenced by 

observations based on work with fractions. In problems such as 

those involving the addition or subtraction of fractions, the 

denominators have to be reconciled first: 
 

 

  

 
 

                                       . 

 

The Chinese used the term tong (“uniformization”) for the 

process of creating a common denominator, such as 4(3) = 3(4). 

They used the term qi (“homogenization”) for the cross-

multiplication that is needed to compare, and in this case add, the 

numerators: 4(8) + 3(7). 
 

To see how the Chinese adapted homogenization to solve for 

unknown quantities in linear problems, consider the first example 

from Chapter 7: 
 

Now an item is purchased jointly; everyone contributes 8 
[coins], the excess is 3; everyone contributes 7, the deficit 
is 4. Tell: The number of people, the item price, what is 
each? (Shen et al., p. 358) 
 

In ancient times, when algebra as we know it did not exist, this 

joint purchase problem was not at all easy to solve. Here is how 

the Chinese viewed its solution, based on Liu Hui’s written 

commentary from 263 AD. We are given: 
 

8 coins per person  1 item and 3 more coins 

7 coins per person and 4 more coins  1 item. 
 

By quadrupling or tripling, respectively, we get: 
 

4(8) coins per person  4 items and 4(3) more coins 

3(7) coins per person and 3(4) more coins  3 items. 
 

Adding the results, 
 

4(8) + 3(7) coins per person  4 + 3 items 
 

Taking the ratio, 
 

34

)7(3)8(4




 coins per person  1 item 

 

53/7 coins per person  1 item. 
 

So, to afford the purchase, each person must contribute 53/7 the 

value of one coin. Note the cross-multiplication used in the 

calculation. This was a pattern that the Chinese committed to 

memory for use as a shortcut, much as in the problem 8/3 + 7/4. 
  

(1)

(3)

(4)

(5)

(2)
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Once the true cost per person is known, the solution is easily 

finished. Comparing each person’s true cost of 53/7 coins to the 8 

= 56/7 coins per person that led to an excess of 3 coins, we see 

that those 3 coins resulted from an overpayment of 3/7 coin per 

person. Thus, there must be 7 buyers involved. Finally, 7 buyers 

each contributing 53/7 coins implies a total price of 53 coins for 

the item. 
 

The British scholar Joseph Needham (1900-1995), one of the 

leading historians of Chinese mathematics and science, pointed 

out that the rationale of balancing excess and deficit found in the 

Nine Chapters seems to reflect one of the key doctrines of 

Confucius (c. 551 –  479 BC), whereby yin and yang must be 

balanced to achieve harmony (Needham, p. 119). In medieval 

times, the Arabs developed, and introduced to Europe, a 

technique called double false position that is somewhat similar to 

the Chinese method of excess and deficit. However, double false 

position was based on Greek theories of ratio and proportion, 

rather than on Confucian doctrines of homogenization and 

balance. 
 

Here is the next problem from Chapter 7. Can you solve it? 
 

Now chickens are purchased jointly; everyone contributes 
9, the excess is 11; everyone contributes 6, the deficit is 
16. Tell: The number of people, the chicken price, what is 
each? (Shen et al., p. 358) 

 

Matrices 
 

The Chinese counting board, with its grid of square cells, was 

also useful for storing and manipulating rows and columns of 

numbers, rather than rows and columns of single digits. Such a 

numerical grid was called a fangcheng, literally “divided 

rectangle”. Much later in the West, this would be called a matrix. 
 

The Chinese were many centuries in advance of the rest of 

the world in using matrices to solve systems of linear equations. 

The coefficients of each equation were stored in one column, and 

the columns were filled from right to left. The numbers were then 

manipulated using the same types of operations described above 

for problems of excess and deficit: multiplying or dividing a 

column by a given number, adding or subtracting two columns, 

etc. To solve a system of linear equations, the rectangle of 

coefficients was reduced to triangular and then diagonal form, in 

a process identical to what Europeans would later call Gaussian 

Elimination. 
 

The first problem in Chapter 8 involves the harvest of three 

different grades of rice: 
 

Now given 3 bundles of top grade paddy, 2 bundles of 
medium grade paddy, [and] 1 bundle of low grade paddy. 
Yield: 39 dou of grain. 2 bundles of top grade paddy, 3 
bundles of medium grade paddy, [and] 1 bundle of low 
grade paddy, yield 34 dou. 1 bundle of top grade paddy, 2 
bundles of medium grade paddy, [and] 3 bundles of low 
grade paddy, yield 26 dou. Tell: how much [dou] does one 
bundle of each grade yield? (Shen et al., p. 399) 
 

The illustration at the top of the next column shows how the 

above problem would be solved on a traditional Chinese counting 

board. Chapter 8 includes other problems with as many as six 

equations and six unknowns. 
 

Geometric Design and Surveying 
 

In the Far East, just as in the West, land surveying and 

construction were major stimuli for the development of geometry. 

 
 

 

The first major steps in building roads and canals in China 

were taken by the emperors of the Qin and Han dynasties. A 

system of roads built around 100 BC made it possible to journey 

from Beijing to Canton (Guangzhou) on horseback in only 32 

days, a distance of about 1200 miles. The Grand Canal, nearly 

200 miles long, was built to connect the two largest river systems, 

the Yangtze and the Huang Ho. Such roads and canals played a 

crucial role in conveying troops, traders, crops, and other things, 

helping to unify the country. Crop irrigation also required 

extensive networks of canals. Each year, in the intervals between 

seasonal farming tasks, every able-bodied man was required to 

donate about one month digging canals or toiling on other public-

works projects for his feudal lord, a practice called corvée labor. 

Chinese technology during the Han period was the most advanced 

in the world. 
 

Building a canal was a significant feat of mathematics and 

engineering. Plane and solid geometry were needed in designing 

and surveying the canal and in 

many phases of its construction. 

For instance, dirt dug from the 

canal bed was routinely used to 

build embankment dykes of packed 

mud on either side; calculations 

were done to ensure that the dyke 

design required exactly the volume of earth that would be 

excavated. The following problem from Chapter 5 asks for the 

volume of a certain qiandu, a word that originally meant 

“embankment dyke” but came to mean “triangular prism”. 

Chinese mathematicians had discovered formulae for the volumes 

of a wide variety of solids, including the qiandu. 
 

Now given a qiandu with a lower breadth of 2 zhang, a 
length of 18 zhang 6 chi and an altitude of 2 zhang 5 chi. 
Tell: what is the volume? (Shen et al., pp. 267-8) 
 

Your answer to the above problem should be given in cubic chi. 
 

Chapter 9 of the Nine Chapters is focused mostly on right 

triangles and their use in various types of problems. The Chinese 

were masters at this. The shorter leg of a right triangle was called 

the gōu; the longer leg, gŭ; the hypotenuse, xián, literally 

“bowstring”; the right triangle itself, gōugŭ; and the Gōugŭ Rule 

or theorem was what we call the Pythagorean Theorem. 
 

The author(s) of the Zhou Shadow-Gauge Manual, the 

second of the Ten Mathematical Classics (c. 100 BC), gave a 

ringing endorsement of the importance of the Gōugŭ Rule 

(Pythagorean Theorem) by writing, 
 

Emperor Yŭ quells floods, he deepens rivers and 
 

continued on next page

Illustration adapted 
from an article by 
Horng Wann-Sheng in 
HPM Newsletter 4:2b 
(Taiwan edition) 
[International Study 
Group on History and 
Pedagogy of 
Mathematics]. 

Drawing: Shen et al., p. 268. 

(6)

(7)

(8)
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The Nine Chapters                     continued from page 11 
 

streams, observes the shape of mountains and valleys, 

surveys the high and low places, relieves the greatest 

calamities and saves the people from danger. He leads 

the floods east into the sea and ensures no flooding or 

drowning. This is made possible because of the Gōugŭ 
theorem. (Yăn and Shírán, pp. 29-30) 

 

The Zhou Shadow-Gauge Manual was an astronomical treatise 

describing uses of the shadow-gauge or gnomon, a right-angled 

ruler. The treatise included a proof of the Gōugŭ theorem by the 

dissection method. In proof by dissection, which was especially 

common in traditional Asian geometry, a figure is imagined to be 

cut into shapes that are rearranged to make clear the relationships 

among the areas involved. 
 

Here is a typical problem from the Nine Chapters that was 

solved using the Gōugŭ theorem: 
 

Now given a circular [i.e., cylindrical] log of unknown size 
buried in a wall. When sawn 1 cun deep, it shows a breadth 
of 1 chi. Tell: what is the diameter of the log? (Shen et al., 
p. 473) 
 

In his written commentary on the Nine Chapters, Liu Hui also 

provided an appendix consisting of surveying problems. The 

appendix was later separated off as a treatise in its own right. It 

became known as the Sea Island Mathematical Manual as a result 

of its first problem: 
 

Now survey a sea island. Erect two poles of the same 
height, 3 zhang, so that the front and rear poles are 1000 
bu apart. They 
are aligned with 
the summit of 
the island. Move 
backwards 123 
bu from the front 
pole, sighting at 
ground level, 
and find that the 
summit of the 
island coincides 
with the tip of 
the pole. Move 
backwards 127 
bu from the rear 
pole, sighting at 
ground level, 
and find that the 
summit of the 
island also 
coincides with 
the tip of the 
pole. Tell: what 
are the height of 
the island and 
its distance from 
the [front] pole? 
(Shen et al., p. 539; illustration, p. 542)                            
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Challenge to Our Readers 
 

The above article includes 10 story problems 

from the Chinese textbook known as the Nine 

Chapters. Read the article, and solve as many 

of the problems as you can. 
 

Submit your findings to editor Randy 

Schwartz (room BTC-510 or by postal or 

electronic mail: see page 2). If you are a math 

student, your instructor might be able to give 

you some extra-credit points for your work. 

 

(9)

(10)
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Students Explore the Nine Chapters from China 
 

We were pleased when our article “A Classic from 

China: The Nine Chapters” (The Right Angle, October 

2008) was greeted with praise from many different 

mathematics instructors. They and their students really 

got into the Reader Challenge: to solve 10 selected 

story problems from this ancient Chinese manuscript. 

 

Thirteen students, enrolled in a variety of 

mathematics courses at Schoolcraft, submitted 

responses to our Challenge: 
  Lisa Mundy, a student in Math 53 

(Beginning Algebra) taught by Matt 

Cooper  Jackie Blasius, Christie Potter, and Linda 

Wroblewski, all students in Math 113 

(Intermediate Algebra) taught by Tanya 

Reynolds  James Dickerson, Laura Houdeshell, Peter 

McCrary, Aaron Rogers, and Dena Sana, 

all students in Math 122 (Elementary 

Statistics) taught by Dr. Reynolds  Allison Lebeau, a student in Math 122 

(Elementary Statistics) taught by Randy 

Schwartz  Michael Thomas, a student in Math 145 

(Calculus for Business and Social 

Science) taught by Dennis Smith  Ed Clancy and Sindhuja Sunder, both 

students in Math 252 (Differential 

Equations) taught by Prof. Schwartz. 

Jim Probelski and Mardell Sitzler were among the 

other instructors who encouraged their students to 

tackle these questions. 

 

Below, we print correct solutions to all 10 

challenge problems. 
 

 

 

Problem 1. Now pay 5785 coins to purchase 1 hu 6 dou 7 2/3 

sheng of lacquer. Tell: how much is 1 dou? 

 

Jackie wrote:  
 

5785 coins 1 hu 6 dou 7 2/3 sheng 
 

5785 coins 10 dou + 6 dou + (7 2/3)/10 dou 
 

5785 coins 16.76666…  dou 
 

5785  16.76666…  coins  1 dou 
 

approx 345 coins  1 dou 

 

 [By using fractions, we can get the exact answer, 

345 15/503.] 

Problem 2. Now given 1 jin of silk costs 240 coins. Tell: 

given 1328 coins, how many jin of silk are obtained? 

(Your answer should be given exactly, in units of jin, 

liang, zhu, and fractions of a zhu.) 

 

Michael wrote: 

 

Since 1 jin of silk cost 240 coins, then 1328 coins will buy 

 

1328 240 jin = 5.5333…   jin 

                        = 384(5.5333…)  zhu 

                        = 2124 4/5 zhu. 

 

Now subtract 5 jin = 384(5) zhu = 1920 zhu, leaving 

 

2124 4/5 – 1920 zhu = 204 4/5 zhu 

                                 = 204 4/5  24 liang 

                                 = 204 4/5  24 liang 

                                 = 8.5333…  liang. 

 

Now subtract 8 liang = 24(8) zhu = 192 zhu, leaving 

 

204 4/5 – 192 zhu = 12 4/5 zhu. 

 

Answer: 5 jin 8 liang 12 4/5 zhu of silk. 

 

 

Problem 3. Now given a field of 1 mu, 6 2/3 sheng 

of millet is collected [as rent]. Tell: given 1 qing 

26 mu 159 [square] bu of field how much millet 

is collected?  

 

Peter wrote: 

 

1 qing 26 mu 159 bu2 = 100 mu + 26 mu + 159 bu2 

                                    = 126 mu + 159 bu2 

                                    = 240(126) bu2 + 159 bu2 

                                    = 30240 bu2 + 159 bu2 

                                    = 30399 bu2 

                                    = 30399  mu 

                                    = 126.6625 mu. 

 

So the rent would be 126.6625(6 2/3 sheng) = approx 

844.416 sheng. 

 

[By using fractions, we can get the exact answer, 844 

5/12 sheng.] 

 

 

Problem 4. Now given the task of transporting tax 

millet is distributed among four counties. County 

A, 8 days from the tax bureau, has 10,000 

households; County B, 10 days from the bureau, 

has 9,500 households; County C, 13 days from 

the bureau, has 12,350 households; County D, 20 

days from the bureau, has 12,200 households. 

The total tax millet is 250,000 hu needing 10,000 
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carts. Assume the task is to be distributed in accordance with 

the distance from the bureau and the number of households. 

Tell: how much millet should each county transport? How 

many carts does each county employ? 

 

Allison wrote: 

 

A: 10,000 houses  8 days = 1250 

B:   9,500 houses  10 days = 950 

C: 12,350 houses  13 days = 950 

D: 12,200 houses  20 days = 610 

Total                                       3760 

 

A: (1250  hu of millet 

B:   (950  hu of millet 

C:   (950  hu of millet 

D:   (610  hu of millet 
 

Total                               250,000      hu of millet
 

250,000 hu needs 10,000 carts, so 1 cart holds 250,000 10,000 = 25 hu. 

 

A:   carts 

B:  carts 

C:  carts 

D:  carts 
 

Total                       10,000 carts. 

 

 

Problem 5. Now someone transports provisions between two 

posts. An unloaded cart travels 70 li a day and a loaded 

one 50 li a day. Transporting millet from the National 

Granary to Shanglin. One makes 3 round trips in 5 days, 

how far is the distance between the two posts? 

 

Let the unknown distance in li be called d. Since time = 

distance  speed, the time needed for one round trip is 
5070
dd 

days. Thus, the time needed for three round trips is 



 

5070
3

dd

days. But we were told this is 5 days, so: 

 

5
5070

3  








 dd
 

 

5
5

1

7

1

10
3  









d
 

 

5
35

12

10

3 









d  

 

18

11
48

18

875

3

10

12

35
5  













d li. 

 

 

Problem 6. Now chickens are purchased jointly; everyone 

contributes 9, the excess is 11; everyone contributes 6, the 

deficit is 16. Tell: The number of people, the chicken 

price, what is each? 

 

Ed wrote: 

 

16(9) coins per person 16 items and 16(11) coins excess 

11(6) coins per person 11 items and 11(16) coins deficit 

16(9) + 11(6) coins per person 27 items 

 

 
27

11(6) + 16(9)
coins per person 1 item 

 

 
9

70
coins per person 1 item 

 

So the item costs  
9

70
coins per person. But when each 

person paid  
9

81
9  coins, the excess was 11 coins. So, 

when each person overpays 
9

11

9

70

9

81
  coins, the excess was 

11 coins. Thus, there are 9 persons, and the item price is 

709
9

70  coins. 

 

 

Problem 7. Now given 3 bundles of top grade paddy, 2 

bundles of medium grade paddy, [and] 1 bundle of low 

grade paddy. Yield: 39 dou of grain. 2 bundles of top 

grade paddy, 3 bundles of medium grade paddy, [and] 1 

bundle of low grade paddy, yield 34 dou. 1 bundle of top 

grade paddy, 2 bundles of medium grade paddy, [and] 3 

bundles of low grade paddy, yield 26 dou. Tell: how 

much [dou] does one bundle of each grade yield? 

 

Linda and Sindhuja used a matrix method similar to Gaussian 

Elimination. Jackie and Christie used a matrix method known 

in Europe as Cramer’s Rule of Determinants. Ed and Dena 

used the algebraic method called Simple Elimination. 

 

Dena wrote: 
 

3923  zyx
                      

   (1) 

3432  zyx                          (2) 

2632  zyx                          (3) 

 

Subtract (2) from (1): 
 

5 yx  

5 yx                                      (4) 

 

Triple (2): 
 

102396  zyx                      (5) 

 

Subtract (3) from (5): 
 

7675  yx  

yx 7765   

5

776 y
x

                                  (6) 

 

Equate (4) and (6): 
 

continued on next page
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Nine Chapters                        continued from page 7 
 

5

776
5

y
y

  

yy 776255   

5112 y  

25.4y  dou 

25.95  yx  dou 

75.2)5.875.27(39)23(39  yxz  dou. 

 

 

Problem 8. Now given a qiandu with a lower breadth of 2 

zhang, a length of 18 zhang 6 chi and an altitude of 2 

zhang 5 chi. Tell: what is the volume? (Your answer 

should be given in cubic chi.) 

 

Linda wrote: 
 

1 zhang = 10 chi  

2 zhang = 20 chi  

18 zhang 6 chi = 186 chi  

2 zhang 5 chi = 25 chi. 

 

The cross-section is a triangle, whose area is 
 

bhA 2
1  

250) 25)( 20(2
1  chichiA square chi 

 

The volume of the prism is the area times the length, 
 

ALV   

) 186)( square 250( chichiV   

chiV  cubic 500,46 . 

 

 

Problem 9. Now given a circular [i.e., cylindrical] log of 

unknown size buried in a wall. When sawn 1 cun deep, it 

shows a breadth of 1 chi. Tell: what is the diameter of the 

log? 

 

Recall that 1 chi = 10 cun, so the exposed breadth extends 5 

cun to each side of the midpoint. 

 

 

 

 

  

 

 

 

 
 

 

By the Gōugŭ theorem, 
 

2
)1(

2
5

2  rr  

12
2

25
2  rrr  

 

262 r  
 

r = 13 cun 
 

diameter = 2r = 26 cun = 2 chi 6 cun. 

 

 

Problem 10. Now survey a sea island. Erect two poles of 

the same height, 3 zhang, so that the front and rear 

poles are 1000 bu apart. They are aligned with the 

summit of the island. Move backwards 123 bu from the 

front pole, sighting at ground level, and find that the 

summit of the island coincides with the tip of the pole. 

Move backwards 127 bu from the rear pole, sighting at 

ground level, and find that the summit of the island also 

coincides with the tip of the pole. Tell: what are the 

height of the island and its distance from the [front] 

pole? 

              
Sindhuja wrote: 
 

Use similar triangles! 

 

 [She converted all lengths to chi in her figure, 

below.] 

 

 

 

 

 

 

 

 

 

 
 

 

By the similarity of the pairs of triangles, 
 

738

30

738
x

h
and 

762

30

6762
x

h
. 

 

Thus,  
 

hx 738)738(30 
 
and  hx 762)6762(30   

 

hx 7382214030   and  hx 76220286030   
 

 2214073830  hx and  20286076230  hx  
 

20286076222140738  hh  
 

hh 73876222140202860   
 

h24180720   
 

. 7530
24

180720 h  

 

But )7530(738738)738(30  hx  
 

so )251(738738 x  
 

    184500)250(738 x  
 

The height of the island is 

 

.55412557530  bu li  bu  chi h 
 

 

Its distance from the front pole is 

. 150  102 30750 184500 bulibuchix  
 

1 
5 5 

r 
r-1 

h 

x 738 

6000 

762 

30 30 


