Grades 5-8 (AD), 9-12 (AD)
Duration: $20-30 \mathrm{~min}$
Tools: one Logifaces Set / class

Individual work

Keywords: Regular prism, Volume

516 - Truncated Volumes

MATHS / 3D GEOMETRY

LOGIFACES METHODOLOGY Erasmus+

DESCRIPTION
Students calculate the volume of the different Logifaces blocks.
LEVEL 1 Consider the volume of block 112, 113 or 223.
LEVEL 2 Consider the volume of block 122, 133 or 233.
LEVEL 3 Consider the volume of block 123 by cutting it into smaller polyhedra.
SOLUTIONS / EXAMPLES
LEVEL 1 The volume of blocks 112, 113 and 223 can be calculated as follows:
Cut the block into two parts with a plane parallel to the base to obtain a regular prism and a triangular-based pyramid. Calculate the volume of the regular prism and the pyramid separately:

Volume of the regular prism: $V=\frac{a^{2} \sqrt{3}}{4} \times h$.

Volume of the triangular-based pyramid: $V=\frac{A \times h}{3}=\frac{a^{2} \sqrt{3}}{4} \times \frac{h}{3}$
block 112:

- regular prism: $V=\frac{4^{2} \sqrt{3}}{4} \times 1=4 \sqrt{3}$
- pyramid: $V=\frac{4^{2} \sqrt{3}}{4} \times 1: 3=\frac{4}{3} \sqrt{3}$
- block 112: $V=4 \sqrt{3}+\frac{4}{3} \sqrt{3}=\frac{16}{3} \sqrt{3} \approx 9.234$
block 113:
- regular prism: $V=\frac{4^{2} \sqrt{3}}{4} \times 1=4 \sqrt{3}$
- pyramid: $V=\frac{4^{2} \sqrt{3}}{4} \times 2: 3=\frac{8}{3} \sqrt{3}$
- block 113: $V=4 \sqrt{3}+\frac{8}{3} \sqrt{3}=\frac{20}{3} \sqrt{3} \approx 11.547$

block 223:

-regular prism: $V=\frac{4^{2} \sqrt{3}}{4} \times 2=8 \sqrt{3}$

- pyramid: $V=\frac{4^{2} \sqrt{3}}{4} \times 1: 3=\frac{4}{3} \sqrt{3}$
- block 223: $V=8 \sqrt{3}+\frac{4}{3} \sqrt{3}=\frac{28}{3} \sqrt{3} \approx 16.166$

LEVEL 2 The volume of blocks 122, 133 and 233 can be calculated as follows:
Cut the block into two parts with a plane parallel to the base to obtain a regular prism and a triangular-based pyramid. Note that in this case, the base of the pyramid is a part of one of the block's lateral faces. Calculate the volume of the regular prism and the pyramid separately:

In all three cases the height of the pyramid is the height of the regular prism: $h=\frac{a \sqrt{3}}{2}=\frac{4 \sqrt{3}}{2}=2 \sqrt{3}$
block 122:

- regular prism: $V=\frac{4^{2} \sqrt{3}}{4} \times 1=4 \sqrt{3}$
- pyramid: $V=1 \times 4 \times 2 \sqrt{3}: 3=\frac{8}{3} \sqrt{3}$
- block 122: $V=4 \sqrt{3}+\frac{8}{3} \sqrt{3}=\frac{20}{3} \sqrt{3} \approx 11.547$
block 133:
- regular prism: $V=\frac{4^{2} \sqrt{3}}{4} \times 1=4 \sqrt{3}$
- pyramid: $V=2 \times 4 \times 2 \sqrt{3}: 3=\frac{16}{3} \sqrt{3}$
- block 133: $V=4 \sqrt{3}+\frac{16}{3} \sqrt{3}=\frac{28}{3} \sqrt{3} \approx 16.166$
block 233:
- regular prism: $V=\frac{4^{2} \sqrt{3}}{4} \times 2=8 \sqrt{3}$
- pyramid: $V=1 \times 4 \times 2 \sqrt{3}: 3=\frac{8}{3} \sqrt{3}$
- block 233: $V=8 \sqrt{3}+\frac{8}{3} \sqrt{3}=\frac{32}{3} \sqrt{3} \approx 18.475$

LEVEL 3 The volume of blocks 123 and 132 can be calculated as follows:
Cut the block into two parts with a plane parallel to the base to obtain a regular prism and another polyhedron. The volume of the regular prism was calculated before: $V=\frac{4^{2} \sqrt{3}}{4} \times 1=4 \sqrt{3}$.

Cut the block into two parts with a plane parallel to the base through the vertex
 of height 2. By joining the two parts, a block 111 can be obtained with a volume of $4 \sqrt{3}$.

So the volume of the block 123 (and 132) is: $8 \sqrt{3} \approx 13.856$.

PRIOR KNOWLEDGE

Features and volume of solids (regular prism)
RECOMMENDATIONS / COMMENTS
For blocks 111, 222 or 333 , the calculation of the volume is easier, see 515 - Simple Volumes. In this exercise, there is also an easier method to calculate the volume of the blocks 123 and 132.

This task is also suitable for differentiation, as Level 3 is much more difficult than the first two.
The calculations can be verified using GeoGebra, see exercise 528 - Read the Results in GeoGebra.

