INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 1.11-1.12] COMPLEX NUMBERS (CARTESIAN FORM)

Compiled by Christos Nikolaidis

CARTESIAN FORM

Ο.	Prac	tice questions	
1.	[Max	kimum mark: 6] <i>[without GDC]</i>	
	Let	$f(z) = z^2 - 8z + 20.$	
	(a)	Find the discriminant Δ of the quadratic function f .	[1]
	(b)	Find the complex roots of the equation $f(z) = 0$ in the form $z = x \pm yi$	[3]
	(c)	Use factorisation to express f in the form $f(z) = (z - h)^2 + k$.	[2]

_				
2.	[Maximum mark: 8]	[with /	without	GDC]

The complex roots of the equation $az^2 + bz + c = 0$ are given by $z = \frac{-b \pm i\sqrt{|\Delta|}}{2a}$.

where $\Delta = b^2 - 4ac$

(a) Find the complex roots of the equation $4z^2 - 8z + 13 = 0$ expressing your answers in the form $z = x \pm yi$. [4]

(b) Confirm that the sum S and the product P of the roots are given by

(i)	$S=-\frac{b}{a}$.	(ii) $P = \frac{c}{}$.	[4]
	a	a	

[MAA 1.11-1.12] COMPLEX NUMBERS (CARTESIAN FORM)

	kimum mark: 18] [with / without GDC] $z_1 = 3 + 4i$ and $z_2 = 10 + 5i$	
(a)	Find the following results in the form $x + yi$.	
	(i) $z_1 + z_2$. (ii) $z_2 - z_1$ (iii) $z_1 z_2$ (iv) $\frac{z_2}{z_1}$	[6]
(b)	Find the following powers in the form $x + yi$ (i) z_1^2 . (ii) z_1^3	[6]
(c)	Find (i) $ z_1 $ (ii) $ z_2 $ (iii) $ z_2-z_1 $	[6]

4.	[Max	ximum mark: 6]	
	(a)	Find $(1-i\sqrt{3})^2$ in the form $a+bi$, where $a,b\in Z$.	[3]
	(b)	Find $(1-i\sqrt{3})^3$.	[3]
	[Cor	nfirm the results by your GDC]	
5.	_	ximum mark: 4]	
	(a)	Given that $(a-2)+3i=7+(b-1)i$, find the value of a and of b , where $a,b\in\mathbb{Z}$.	[2]
	(b)	Given that $(c-2)+(d-1)\mathbf{i}=0$, find the value of c and of d , where $c,d\in\mathbb{Z}$.	[2]

[Max	ximum mark: 9] <i>[with / without GDC]</i>	
Let	z = x + yi. Find the values of x and y if	
	(2+5i)z = 1+17i	
(a)	by substituting $z = x + yi$ in the equation and solving the simultaneous equations.	[5]
(b)	by using division (an equation of the form $az = b$, implies $z = b/a$)	[4]

A. Exam style questions (SHORT)

7.	[Maximum mark: 6]	[without GDC]
	Let the complex number	er z be given by $z=1+\frac{i}{i-\sqrt{3}}$.
	Express z in the form	$a+b\mathrm{i}$, giving the exact values of the real constants a , b .
8.	[Maximum mark: 5]	
	Express $\frac{1}{(1-i\sqrt{3})^3}$ in t	he form $\frac{a}{b}$ where $a,b \in Z$.

9.	[Maximum mark: 6]	[with / without GDC]
	Let $z = \frac{2}{1-i} + 1 - 4i$. Ex	xpress z^2 in the form $x + yi$ where $x, y \in \mathbb{Z}$.
10.	[Maximum mark: 6] Consider the equation numbers. Find p and	2(p+iq) = q-ip-2(1-i), where p and q are both real
	••••••	

_	[i] [without GDC] $(2-bi) = (7-i)$, find the value of a and of b , where	$e a b \in \mathbb{Z}$
a(u+1)	(2-b1) = (7-1), find the value of u and of v , when	$e \ u,v \in \mathbb{Z}$
_	[with / without GDC] $a \text{ and } b$, where $a \text{ and } b$ are real, given that $(a+b)$	
_	[a] [with / without GDC] $[a]$ and $[b]$ are real, given that $[a+b]$	
_		
_		
_		bi)(2 – i) =
_	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) =
I the values of a	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) :
I the values of a	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) :
the values of a	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) :
I the values of a	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) :
I the values of a	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) :
the values of a	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) =
I the values of a	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) =
the values of a	a and b , where a and b are real, given that $(a+b)$	bi)(2 – i) =
the values of a	a and b, where a and b are real, given that (a+b)	bi)(2 – i) =
the values of a	a and b, where a and b are real, given that (a+b)	bi)(2 – i) =
the values of a	a and b, where a and b are real, given that (a+b)	bi)(2 – i) =
the values of a	a and b, where a and b are real, given that (a+b)	bi)(2 - i) =
the values of a	a and b, where a and b are real, given that (a+b)	bi)(2 - i) =
I the values of a	a and b, where a and b are real, given that (a+b)	bi)(2 – i) =

	imum mark: 5] <i>[without GDC]</i> complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the
he	imum mark: 5] <i>[without GDC]</i>
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] <i>[without GDC]</i> complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] <i>[without GDC]</i> complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.
he	imum mark: 5] [without GDC] complex number z satisfies $\mathrm{i}(z+2)=1-2z$, where $\mathrm{i}=\sqrt{-1}$. Write z in the $a+b\mathrm{i}$, where a and b are real numbers.

[MAA 1.11-1.12] COMPLEX NUMBERS (CARTESIAN FORM)

	[Maximum mark: 6] [Without GDC]
	The two complex numbers $z_1 = \frac{a}{1+i}$ and $z_2 = \frac{b}{1-2i}$ where $a,b \in R$, are such that
	$z_1 + z_2 = 3$. Calculate the value of a and of b .
16.	[Maximum mark: 6] [without GDC]
16.	[Maximum mark: 6] [without GDC] Solve the following equation for z , where z is a complex number.
16.	
16.	Solve the following equation for z , where z is a complex number.
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}} + \frac{z-1}{5\mathrm{i}} = \frac{5}{3-4\mathrm{i}}$
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}} + \frac{z-1}{5\mathrm{i}} = \frac{5}{3-4\mathrm{i}}$
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}} + \frac{z-1}{5\mathrm{i}} = \frac{5}{3-4\mathrm{i}}$
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}} + \frac{z-1}{5\mathrm{i}} = \frac{5}{3-4\mathrm{i}}$
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}} + \frac{z-1}{5\mathrm{i}} = \frac{5}{3-4\mathrm{i}}$
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}}+\frac{z-1}{5\mathrm{i}}=\frac{5}{3-4\mathrm{i}}$ Give your answer in the form $a+b\mathrm{i}$, where $a,b\in\mathbb{Z}$
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}}+\frac{z-1}{5\mathrm{i}}=\frac{5}{3-4\mathrm{i}}$ Give your answer in the form $a+b\mathrm{i}$, where $a,b\in\mathbb{Z}$
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}}+\frac{z-1}{5\mathrm{i}}=\frac{5}{3-4\mathrm{i}}$ Give your answer in the form $a+b\mathrm{i}$, where $a,b\in\mathbb{Z}$
16.	Solve the following equation for z , where z is a complex number. $\frac{z}{3+4\mathrm{i}}+\frac{z-1}{5\mathrm{i}}=\frac{5}{3-4\mathrm{i}}$ Give your answer in the form $a+b\mathrm{i}$, where $a,b\in\mathbb{Z}$

17.	[Max	imum mark: 10]	[without GDC]	
	Solve	e the equations		
	(a)	(2+5i)z+9=3z	+19i	[5]
	(b)	$(2+5i)z+8=3\overline{z}$	+ 20i	[5]

18.	[Maximum mark: 6] [without GDC]
	Given that $ z = 2\sqrt{5}$, find the complex number z that satisfies the equation
	$\frac{25}{z} - \frac{15}{z^*} = 1 - 8i$.
	2 2
19.	[Maximum mark: 6] [with / without GDC]
	Let z_1 and z_2 be complex numbers. Solve the simultaneous equations
	$2z_1 + 3z_2 = 7$
	$z_1 + iz_2 = 4 + 4i$
	Give your answers in the form $z = a + bi$, where $a, b \in \mathbb{Z}$.

20*.	[Maximum mark: 7] [without GDC]
	Consider $w = \frac{z}{z^2 + 1}$ where $z = x + yi$, $y \neq 0$ and $z^2 + 1 \neq 0$.
	Given that $\operatorname{Im} w = 0$, show that $ z = 1$.

21*.	[Maximum mark: 6]	[without GDC]
	If $z = x + yi$ is a comp	lex number and $ z+16 =4 z+1 $, find the value of $ z $.

		POLYNOMIALS	
Ο.	Pract	tice questions	
22.	[Max	kimum mark: 7] <i>[without GDC]</i>	
	Con	sider the polynomial $f(z) = z^3 - 3z^2 + 7z - 5$	
	(a)	Confirm that 1 is a root of $f(z)$	[1]
	It is	given that $f(1+2i) = 0$	
	(b)	Write down the two complex roots of $f(z)$.	[1]
	(c)	Write down the three linear factors of $f(z)$ (with complex coefficients).	[3]
	(d)	Express $f(z)$ in the form $(z-a)(z^2+bz+c)$ where $a,b,c\in Z$.	[2]

23.	[Max	imum mark: 8]	
	Cons	ider the polynomial	
	(0)	$f(z) = 2(z-1+2\mathrm{i})(z-1-2\mathrm{i})(z-1)(z-2)$	[0]
	(a)	Write down the four roots of the polynomial.	[2]
	(b)	Express $(z-1+2i)(z-1-2i)$ in the form $z^2 + Bz + C$	[2]
	(c)	Express $f(z)$ in the form $az^4 + bz^3 + cz^2 + dz + e$.	[2]
	(d)	Confirm that the sum and the product of roots are given by $S = -\frac{b}{a}$ and $P = \frac{e}{a}$.	[2]

[with / without GDC] 24. [Maximum mark: 8] Consider the polynomial $f(z) = 2z^4 + az^3 + 26z^2 + bz + 20$ Given that 1 and 2 are roots find the values of a and b. [4] find the other two roots of f(z). [4] (b)

25.	[Maximum mark: 6]	[without GDC]
	Consider the polynomi	al
		$f(z) = 2z^4 - 10z^3 + 26z^2 - 38z + 20$
	Given that $z = 1 - 2i$ is	a root find the other 3 roots of $f(z)$.
	•••••	

	3 of the roots are $1-2i$, 1 , 2
	the remainder when $f(z)$ is divided by $z+1$ is 96
••	
••	
••	
••	
••	
••	
• •	

A. Exam style questions (SHORT)

et .	timum mark: 6] [without GDC] $P(z) = z^3 + az^2 + bz + c$, where a, b and $c \in \mathbb{R}$. Two of the roots of $P(z) = 0$ -2 and $(-3 + 2i)$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2\mathrm{i})$. Find the value of a , of b and of c .
et .	$P(z)=z^3+az^2+bz+c$, where a,b and $c\in\mathbb{R}$. Two of the roots of $P(z)=0$ -2 and $(-3+2i)$. Find the value of a , of b and of c .

29.	[Maximum mark: 6] [without GDC]	
	The polynomial $P(z) = z^3 + mz^2 + nz - 8$ is divisible by $(z+1+i)$, where $z \in C$ and	
	$m, n \in \mathbb{R}$. Find the value of m and of n .	
	METHOD A: Substitute the solution $z = -1 - i$.	
	[not the ideal way but good for practice!]	

METHOD B: Find first the three roots of P(z), hence the factorization and expand [Much quicker!]

Exam style questions (LONG) 30. [Maximum mark: 10] [without GDC] Evaluate $(1+i)^2$, where $i = \sqrt{-1}$. [2] Prove, by mathematical induction, that $(1+i)^{4n} = (-4)^n$, where $n \in \mathbb{N}^*$. [6] Hence or otherwise, find $(1+i)^{32}$. [2] (c)

[Maximum mark: 13] [without GDC]				
Let $z = a + bi$ and $w = c + di$,				
(a)	Express zw in the form $x + yi$	[2]		
(b)	Show that $ zw ^2 = (ac)^2 + (bd)^2 + (ac)^2 + (bd)^2$	[2]		
(c)	Show that $\overline{z+w} = \overline{z} + \overline{w}$	[2]		
(d)	Show that $\overline{zw} = \overline{z} \overline{w}$	[3]		
(e)	Show that $ zw = z w $	[4]		

[MAA 1.11-1.12] COMPLEX NUMBERS (CARTESIAN FORM)

32.	[Max	imum mark: 12]	
		given that $\overline{zw} = \overline{z} \overline{w}$ and $ zw = z w $ for any complex numbers z and w .	
		v, by using mathematical induction, that for any $n \ge 2$ it holds	
	(a)	$\overline{z^n} = \overline{z}^n$	[6]
	(b)	$\left z^{n}\right =\left z\right ^{n}$	[6]