Grades 5-8 (S), 9-12 (S) Duration: 10-15 min Tools: one Logifaces Set / 3-5 student Individual / Pair work Keywords: Length, Pythagorean theorem	404 - Top Edges	CONFACES Erasmus+ TEACCHEER Logifaces 2019-1-HU01-KA201-0612722019-1
---	-----------------	--

DESCRIPTION

Students calculate the lengths of the top edges of the blocks, using the standard units. SOLUTIONS / EXAMPLES

The length of the top edge depends on the length of the vertical edges connecting to the end vertices of the edge.

SOLUTIONS		CALCULATIONS		
vertical edges	length of the top edge (in standard unit)	length of the top edge (real length in cm)	case 21:	case 32:
11	4	5	$\begin{array}{c c} 2 & & & & \\ 4 & & & & \\ 4 & & & & \\ \hline \\ \mathbf{case 31:} & & & 4 \end{array}$	
22	4	5		
33	4	5		
21	$\sqrt{17} \approx 4.12$	$\frac{5\sqrt{17}}{4} \approx 5.15$		
32	$\sqrt{17} \approx 4.12$	$\frac{5\sqrt{17}}{4} \approx 5.15$		
31	$\sqrt{20} \approx 4.47$	$\frac{5\sqrt{20}}{4} \approx 5.59$	4	

Calculating the lengths using Pythagorean theorem:

case 21 and case 32 $1^{2} + 4^{2} = x^{2} \Rightarrow x^{2} = 17 \Rightarrow x = \sqrt{17}$

case 31

2² + 4² = x² \Rightarrow x² = 20 \Rightarrow x = $\sqrt{20}$

PRIOR KNOWLEDGE

Pythagorean theorem

RECOMMENDATIONS / COMMENTS

The calculations can be verified using GeoGebra, see exercise <u>528 - Read the Results in GeoGebra</u>. For individual work the teacher can differentiate between students. Students can choose fewer or more pieces to arrange based on the level of their knowledge. The lengths of the edges of blocks 111, 222 or 333 are easier to calculate than the others.