
Chapter 27

The paradoxical nature of mathematics

Vassiliki Farmaki and Stelios Negrepontis

Abstract Mathematics is usually described as a deductive science. The set of axioms, with which
we start, should be as economical as possible, hopefully consistent, and deductively strong with as
many as possible “desirable” consequences. How do we achieve sufficient deductive power for an
axiomatic system?

In this work we present the unorthodox thesis that the deductive strength in Mathematics comes,
perhaps exclusively, from its paradoxical nature, namely from its proximity to the contradictory,
a proximity that almost always takes the form of a Finitization of the Infinite. We support our
thesis by examining Euclidean Geometry; Number Theory; Incommensurability and periodic an-
thyphairesis/continued fractions in the Mathematics and the Philosophy of the Pythagoreans, Zeno,
Theaetetus, Plato; ratios of magnitudes and method of exhaustion in weakly finitized form by Eu-
doxus, and Real numbers and Calculus in the strongly finitized form by Dedekind completeness; Set
theory axioms such as the axiom of choice, with special reference to compactness and ultrafilters,
and Gödel’s program with axioms of large cardinals. In the last two sections we argue that Beauty
in Mathematics and we suggest that the “Unreasonable Effectiveness of Mathematics in the Natural
Sciences” are both manifestations of the Paradoxical Nature of Mathematics.

1 The paradoxical nature of mathematics

1.1 Truth table of the conditional. The starting point of our idea is extremely sim-
ple, the truth table of the Conditional “if P, then Q”. It is false only in one case, if P is
true and Q is false, and it is true in the three other cases. The canonical case where the
conditional is true is when P and Q are true. By taking the contrapositive, we are forced
to conclude that if P and Q are false, then surprisingly the conditional must be true.

We cannot think of any adequate justification for the last remaining True case, the
conditional False!True. One might argue that since False!False is judged worthy
to be declared True, then, a fortiori, this must be too; but it must remain the most
controversial, even scandalous, assignment, since it appears to allow providing False
cause for something otherwise True.

P Q P!Q
True True True
True False False
False False True
False True True

Let us note that this truth table was perfectly known to Philo, the logician, who
lived about the time of Euclid (Sextus Empiricus, Adversus Mathematicos Book 8,
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Sect. 112, line 4 to Sect. 117, line 7 of the original text, cf. [70]). Philo explained the
truth table with convincing examples:

If it is day Then there is light
True True True

If it is day Then it is night
True False False

If earth flies Then earth has wings
False False True

If earth flies Then earth exists
False True True

Thus Philo’s example “If earth flies, then earth exists” is a True conditional.

1.2 Contradictory hypotheses are most powerful. By Modus Ponens, if a state-
ment P, although False, is nevertheless assumed as an axiom, we conclude that every
statement Q, irrespective of it being true or false, is necessarily a consequence of P.

If a statement P is a contradictory one, of the form P D (X & not X) for some
statement X, then P is False. Thus, the strongest possible axioms or hypotheses, with
unlimited deductive power, are the contradictory ones.

1.3 Consistent approximations of the contradictory. The paradoxical nature of
Mathematics: the deductive power of Mathematics is due to (a hopefully consistent)
approximation of the contradictory.

Even though contradictory statements are full of consequences, we nevertheless
consider them as unacceptable, precisely because they are contradictory.

We will argue that substantial parts of Mathematics (perhaps even all of Mathe-
matics) are derived from assumptions and axioms that may be described as (hopefully
consistent) approximations of the contradictory, and which by being consistent are
acceptable as axioms or constructions based on axioms, and by being approximation
to the contradictory inherit some of its unlimited deductive power.

Thus, according to this view, we succeed in obtaining deeper and deeper mathe-
matical “truths” by approaching more and more a contradiction, the absolute “false”.
This is what we mean by the paradoxical nature of Mathematics. As this might ap-
pear to be a controversial thesis, we will make every effort to justify it.

1.4 Finitizing the infinite. In fact, there is one contradictory statement that appears
to be particularly important: the statement that an entity infinite in some sense is at the
same time finite. We will examine some of the historically most important axiomatic
systems in Mathematics, from Euclidean Geometry (in Section 2) and the Theory of
Numbers (in Section 3) to the ancient and modern Real Numbers (in Sections 5, 6)
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and various aspects of Set Theory (in Sections 7, 8, 9), and we will find that, in each of
these systems, some aspects of a built in Infinity is given, by the crucial introduction
of an axiom or a principle or a definition, a near-contradictory Finite description, thus
introducing a (hopefully consistent) Finitization of the Infinity. We will argue that
the cause of the deductive power of each of these systems is precisely this crucial
Finitization of Infinity (and the resulting approximation of the contradictory) that
takes place in the system.

As we shall see in Section 4, the Pythagoreans already realized that the nature of
Mathematics is the Finitization of the Infinite, a view that became central in Plato’s
philosophy; Hermann Weyl has expressed lucidly essentially the same thesis:1

Mathematics is the science of the infinite, its goal the symbolic compre-
hension of the infinite with human, that is finite, means [85, p. 38].

Mathematics has been called the science of the infinite. Indeed, the
mathematician invents finite constructions by which questions are de-
cided that by their very nature refer to the infinite. That is his glory. [84,
p. 12].

2 The fifth postulate in Euclid’s Elements is a finitization of the infinite
in plane Euclidean Geometry without ratios

Plane Geometry without ratios is based on Postulates in Euclid’s Elements.
Postulate 2 states that any line segment can be extended to a greater line segment

ad infinitum, and thus it introduces (potential) infinity into Euclidean Geometry.

2.1 The impossibility to prove parallelness only with postulate 2. Postulate 2
allows for the definition of parallelness.

Definition of parallel lines. Two lines a, b are parallel if any extension of a (by
Postulate 2) does not meet any extension of b (by Postulate 2).

Impossibility of proof that lines are parallel from the definition alone. From
the definition alone, a proof that two lines are parallel cannot be obtained, since
an infinite number of constructions (applications of Postulate 2) is needed. Indeed
if after a finite number of extensions, according to Postulate 2, of lines a and b, the
extended lines meet, we immediately conclude that the lines are not parallel; but if
they do not meet, then we would have to proceed to another extension of a and b, and

1Here, and in other quotes, the emphasis is ours.
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so on ad infinitum. It is clear that if the lines are indeed parallel, we will never be able
to prove this from the definition alone.

A criterion for parallelness is given by Proposition I.16 of the Elements:

The exterior angle of a triangle is greater than each interior opposite
angle of the triangle.

The Proposition does not use Postulate 5, but only the first four Postulates, and, indeed
a corollary of it provides an effective criterion for parallelness:

If a third line c cuts both a and b and the interior and alternate angles
are equal, then a and b are parallel.

This criterion is used in Proposition I.30 to construct a line parallel to a line from
a point not in the line.

2.2 Postulate 5 finitizes the infinite number of steps needed to prove parallelness
solely by the definition. Postulate 5, stating that if two lines are parallel, and if cut
by third, then the alternate internal angles thus formed are equal, rules that the only
possibility for lines a and b to be parallel is given by corollary to I.16, thus excluding
any other potential causes for parallelness.

Postulate 5 is a (hopefully consistent) Finitization of the Infinite, since the infinite
number of constuctions based on Postulate 2, described in Section 2.1 above, required
for the verification that the two lines are parallel, are replaced by a one step verifica-
tion of the equality of angles, and is thus a near-contradictory statement, replacing
“infinity” with its contradictory “finite”, hopefully in a way that avoids outright con-
tradiction.

Byers in [6, pp. 95–96] has made much the same point:

Parallel lines by definition never meet. But lines in Euclidean geometry
are infinitely extendible. How then can one hope to prove that two lines
will never meet no matter how far they are extended? Lines are infinite
geometric objects. There is a certain intrinsic incompleteness about such
objects, and yet mathematics wishes to make definitive statements about
them.

To prove that lines are parallel requires, at first glance, showing that
no matter how far one extends the lines they will never meet.

This is a kind of infinite argument in the same sense that showing that
the sum of an odd number and an even number is always an odd number
is also an infinite argument (it applies to an infinite number of cases).
Mathematics characteristically deals with such “infinite” situations. In
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doing so it must replace an indefinite or infinite property with one that
is essentially finite.

In the proof, the finite property is the equality of the alternate angles.
In the parallel postulate the “infinite” condition of parallelism is

replaced by the “finite” condition for nonparallelism.
The use of an argument by contradiction is a way of making this

essential reduction.

Exactly because Postulate 5 is a finitization of the infinite, we expect that Postulate 5
has great deductive power.

Indeed, it is true that all plane Euclidean Geometry, without ratios of magnitudes,
namely the second half of the first and the second, third and fourth Book of the Ele-
ments [65], are consequences of the Fifth Postulate.

For the same reason we expect that Postulate 5 has paradoxical consequences.
Indeed the ancients had noticed that Postulate 5 has paradoxical consequences; Pro-
clus, in his Commentary to the first Book of the Elements 395,16–397,12 and 403,4–
404,26, has lengthy comments on the paradoxical nature of Propositions I.35 & 37
and III.20 of the Elements: Triangles with base on a line a and third vertex on another
line b parallel to a are finite, in fact they have fixed area, while increasing to infinity
in length of perimeter.

Note. The axiom of parallelness in hyperbolic geometry is also a Finitization of In-
finity, because the set of parallels from a point to a given line consists of two limiting
lines. It follows then from a result of A. Papadopoulos and W. Su [59], that the
Parallel Axiom for hyperbolic geometry produces an analogue of Proposition I.37,
a corresponding paradoxical proposition. As mentioned in Section 12, below, Propo-
sition I.37 was pivotal for Newton; in fact it is closely related to Kepler’s Second Law
and the conservation of angular momentum. We wonder if its hyperbolic analogue
could play for Special Relativity an analogous role.

3 The finitization of the infinite in the theory of numbers. From
incomplete induction to the principle of the least to the principle
of mathematical induction

3.1 The method of proof by induction in Greek mathematics vs. proofs by the
principle of mathematical induction. Ancient mathematical induction: Proof(n)
for every P(n), but no proof of (8n)P(n).

The Greeks, in fact already the Pythagoreans, had an incomplete version of math-
ematical induction. The best specimen, as far as we know, is the Pythagorean proof
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by induction of Pell’s Diophantine equation

q2n D 2p2n C .�1/n

for the double sequence of the side pn and diameter qn numbers, defined recursively
by

p1 D q1 D 1;
pnC1 D pn C qn; qnC1 D 2pn C qn for n D 1; 2; : : :

The Pythagorean proof of the Pell equation is recounted by Theon Smyrneus [72]
44,18–45,8, Iamblichus, Comments to Nikomachus [39] 92,23–93,6, and mainly Pro-
clus, Commentary to Politeia [64] 2,24,16–25,13 and 2,27,1–29,4. Some scholars
(Freudenthal [24]) support, but more recently other (Unguru [79], Acerbi [1]) have
challenged, a proof by induction. In our work [52, Chapter 8], reading the sources
meticulously, we have some novel arguments indicating an inductive proof, but with-
out the principle of mathematical induction. Since this may well be the very first
inductive proof, we are outlining here our reconstruction of the argument.

According to the sources cited, the Pythagoreans noted that each rational diameter
by itself a not a true diameter, because its square is not equal to double the square of its
side (something impossible for numbers, by the incommensurability of the diameter
to the side of a square, cf. Section 4.1, below), but equal to double the square minus
1 or plus 1; however, they found encouragement into the fact that the square of the
diameter is double the square minus 1 or plus 1 in an alternating (enallax, Theon,
Iamblichus) manner. In consequence, in order to ensure exact diameter type equality
to side (apisosis, isotes, apisosei in Iamblichus; isoteta in Theon) they were led to
form the sum of the square of a rational diameter together with (meta) the square
of the next diameter, which sum is then exactly equal to the double (ontos diplasion
in Proclus 2,25,11) of the square of the side and (kai, a connective different from
meta) the square of the next side This led them to the discovery of the geometric
Proposition II.10 of the Elements (the identity .a C 2b/2 C a2 D 2..aC b/2 C b2/
for any lines a; b).

Proposition II.10 is now employed twice.
At first geometrically (grammikos, linearly), in order to prove the so-called ele-

gant (glaphuron) theorem, clearly turning II.10 into a proof of a (geometric) inductive
step (if a is diameter and b side, then a C 2b is diameter and a C b side). The pe-
culiar language which was used by Proclus to describe the basic heuristic idea of
the Pythagoreans (first the word meta and next the word kai, Proclus 2,25,9–13), is
now used in the application of Proposition II.10 for the proof of the elegant theorem
(2,27,24–2,28,4), thus revealing that the Pythagorean heuristics was in fact motivated
by an inductive argument. We conjecture that the Pythagorean attempt to turn the
rational diameter into a real, geometric one marked the Birth of Induction.

Finally, II.10, in an arithmetic form, immediately deduced from the geometrical,
is used for the proof of every inductive step of the Pell equation. Again the fact
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that every inductive step of Pell’s equation (2,28,17,21; 2,28,22–24; 2,28,27–29,1) is
phrased in language identical with the statement of the elegant theorem (2,27,13–16),
indicates that the elegant theorem is the model for every inductive step of Pell’s equa-
tion. Thus the Pythagoreans proved the following

Proposition P(n). Let n be a given natural number. The nth side number pn and
diameter number qn satisfy Pell’s Diophantine equation

q2n D 2p2n C .�1/n:

The Pythagorean proof, reconstructed according to above arguments, now runs
smoothly as follows:

Proposition P(1) clearly holds.
We obtain a proof Proof(2) for Proposition P(2), by applying Proposition II.10

with a D p1, b D q1, using the recursive definition, and using the fact that Proposi-
tion P(1) holds.

We next obtain Proof(3) for Proposition P(3) by applying Proposition II.10 with
a D p2, b D q2, using the recursive definition, and using the fact that Proposi-
tion P(2) holds. It is clear that continuing in this way we can obtain Proof(n) for
Proposition P(n).

The number of steps of these separate proofs Proof(n) is going to infinity as n is
going to infinity (and thus ad infinitum, kai aei outos, 2,29,4). So the ancients had no
one proof for all n simultaneously.

They had a proof Proof(n) for P(n) for every n, but they had no proof for the
Proposition (8n)P(n), because this proof would have infinite number of steps.

We may call the ancient induction unfinitized induction. Greeks never finitized
mathematical induction.2

The situation is akin to the situation in geometry, with Postulate 2 in the absence
of Postulate 5.

3.2 The principle of the least in the arithmetical book VII of the Elements. The
Greeks never discovered complete induction, but nevertheless found a satisfactory
solution to the problem by switching, consciously or unconsciously, to the Principle
of the Least (or, of the well-ordering of the natural numbers): every non-empty subset
of N has a least element.

The Principle of well-ordering of natural numbers is used twice in Book VII of
the Elements,

2Plato’s Parmenides 149a7c3 has been proposed, in [83] and also in [1], as a perfect specimen of ancient
proof by mathematical induction; however our analysis in [47, Section 3.6] shows that Plato means this to be an
argument involving only finite induction, since there are only finitely many “hapseis”/logoi in every true Being,
forming a period.



606 V. Farmaki and S. Negrepontis

(a) for the proof that every number is a prime or divided by a prime (Proposi-
tion VII.31), and

(b) for the proof that the anthyphairesis/Euclidean algorithm of two numbers is
finite, with last remainder the Greatest Common Divisor of the two numbers
(Proposition VII.2).

The Principle of the Least is very clearly expressed in the proof of Proposition VII.31:

for if it [a prime number] is not found, an infinite sequence of numbers
will measure the number A, each of which is less than the other: which
is impossible in numbers (Euclid’s Elements VII.31, 14–16).

From Proposition VII.31, the second application of the Principle of the Least, it
is straightforward that every number is equal to a product of prime numbers, from
Proposition VII.30, using Proposition VII.20 (if a=b D c=d and a, b are relatively
prime, then there is k such that c D ka, d D kb), itself a consequence of Proposi-
tions VII.1 & 2, the first application of the Principle of the Least, it follows that the
analysis in primes is unique. Thus, although not stated explicitly, these two propo-
sitions essentially contain the Fundamental Theorem of Arithmetic (every number is
a product of primes in a unique way).

The Principle of the Least is a principle Finitizing the Infinite, since there would
be no reason a priori to exclude an infinite strictly descending sequence of the infinite
set of natural numbers. It is perhaps best seen that it is in fact a Finitizing principle if
we consider that, as it is known today, it is equivalent to Peano’s Principle of Mathe-
matical Induction, which is clearly a Finitizing Principle, as explained in Section 3.3.

The power of the Principle of the Least is evident, as all elementary Theory of
Numbers is a consequence of this Principle.

3.3 The principle of mathematical induction is a finitization of the infinite in
arithmetic. The Principle of Mathematical Induction: If a subset A of the set of
natural numbers contains the number 1, and if n is an element of A then nC 1 is also
an element of A, then A coincides with the set of natural numbers.

It has been introduced in modern Mathematics by Pascal [61] and formally by
Peano. The Principle of Mathematical Induction is equivalent to the Principle of the
Least. It is a Finitization of the Infinite, since the infinite number of steps required to
prove an arithmetical statement with mathematical induction are reduced to just two
steps. As such we expect that the principle is indeed extremely powerful, with great
deductive power. Indeed, all elementary Number Theory, including the Fundamental
Theory of Arithmetic is a consequence of the principle of Mathematical Induction.

3.4 Is mathematical induction contradictory? Since Mathematical Induction is,
being a Finitization of the Infinite, an approximation of the Contradictory, we are
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in danger of introducing a contradiction in Mathematics. Is Mathematical Induction
a consistent axiom? Edward Nelson [54] believed that inductive reasoning on large
exponentials of numbers hides circular reasoning. Although his views have not been
widely accepted, and although we do not believe that mathematical induction intro-
duces some kind of contradiction, nevertheless Nelson’s views do show that flirting
with finitizations of infinity could be dangerous, and not necessarily routine or “inno-
cent”.

4 The Pythagoreans–Theaetetus finitization of the infinite
in incommensurability with periodic anthyphairesis and their
shaping of the philosophy of the Pythagoreans, Zeno and Plato

4.1 The Pythagorean discovery of the incommensurables. The great mathemati-
cal discovery of the incommensurability by the Pythagoreans was a momentous event
for Greek Mathematics.

Definition X.1 of the Elements. Two magnitudes a, b are commensurable if there
are natural numbers m, n, and a magnitude c, such that a D mc and b D nc; and,
incommensurable if they are not commensurable.

The greatest mathematical discovery of the Pythagoreans was the discovery of the
incommensurability of the diameter/diagonal to the side of a square.

Definition (implicitly given in Propositions VII.1 & 2, X.2 of the Elements). If lines
a, b, and a > b, then the anthyphairesis of a to b is defined as follows:

a D k1b C c1; c1 < b;

b D k2c1 C c2; c2 < c1;

c1 D k3c2 C c3; c3 < c2;

: : :

If this division process never ends, then the anthyphairesis of a to b is infinite, other-
wise finite.

According to Proposition X.2 of the Elements, if the anthyphairesis of a to b is infi-
nite, then a and b are incommensurable. (Anthyphairesis is the precursor of modern
continued fractions, incommensurability of modern irrationality, and Proposition X.2
of the statement: if the continued fraction of a real number is infinite, then the real
number is irrational).
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The Pythagoreans proved the incommensurability of the diameter to the side of
a square by proving that the anthyphairesis of a to b is infinite and then employing
Proposition X.2.

The incommensurability cannot be obtained simply from the definitions, since
an infinite number of constructions are needed to verify the hypothesis of Proposi-
tion X.2, namely that the anthyphairesis of a to b is infinite (a D bCc1, b D 2c1Cc2,
c1 D 2c2Cc3, and so on ad infinitum). The Pythagoreans overcame this difficulty and
succeeded in finitizing the infinite anthyphairetic procedure, by means of the preser-
vation of the Gnomons, equivalently, the preservation of the application of areas in
the anthyphairesis of the diameter to the side of a square:

a2 D 2b2I
a D b C a1; hence .b C a1/2 D 2b2; namely a21 C 2ba1 D b2;

application of areas in excessI
b D 2a1 C b1; hence a21 C 2.2a1 C b1/a1 D .2a1 C b1/2;

namely a21 D b21 C 2a1b1; application of areas in excess;

identical to the previous one:

It follows that all steps from now on will be identical. This is the precursor of the
Logos criterion for the periodicity of the anthyphairesis (here b=c1 D c1=c2). Hence,
Anth.a; b/ D Œ1; 2; 2; 2; : : :�.

4.2 Theaetetus’ great theorem on palindromically periodic incommensurability
and the first restricted model of the reals, and his theory of ratios of magnitudes
based on equality of anthyphairesis, the first restricted model of the reals.

4.2.1 Theaetetus theorem. We start by stating this theorem:

Theaetetus’ theorem. If a, b are lines, such that a, b are incommensurable, but a2,
b2 are commensurable, then the anthyphairesis of a to b is palindromically periodic.
(In modern terminology: if N is a non-square natural number, then the continued
fraction of

p
N is palindromically periodic).

There is no ancient source attributing this remarkable theorem to Theaetetus, or to
any ancient mathematician.

That Theaetetus has indeed proved this theorem follows:

� on the one hand from our analysis of the Platonic dialogues Theaetetus, in
which Plato describes Theaetetus’ mathematical contributions and then de-
clares his will to imitate his method in philosophy; Sophistes, in which Plato
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defines the Angler and the Sophist by a philosophical method that clearly im-
itates periodic anthyphairesis; and especially Politicus, in which Plato defines
the Statesman by a philosophic analogue of a palindromically periodic anthy-
phairetic division, and then essentially states the theorem when he speaks of
two measurement of an entity one against its opposite, second against the [ge-
ometric] mean (283b–287b); and

� on the other hand, because the contents of the Theaetetean Book X of the El-
ements (especially the two central definitions of lines, the apotome and the
binomial line, and Propositions X.112–114 on the conjugation of the apotome
and the binomial lines) are all the tools needed to reconstruct its proof [48, 51].

The proof employs the Principle of the Least and the Fifth postulate. The mixture
of incommensurability in length and commensurabilty in square produces pigeon-
hole principles from which both periodicity and palindromicity follow. Plato in the
Politicus 272d6–e6 clearly takes note of the application of pigeonhole to go from the
Cronus era (the first half of the period) to the Zeus era (the second half of the period,
palindromic to the first).

Theaetetus’ theorem may be thought of as a far-reaching generalization of the Eu-
clidean algorithm for pairs of numbers (Proposition VII.1 & 2 of the Elements) or of
pairs of commensurable lines (Proposition X.3) shown to have finite anthyphairesis,
to pairs of incommensurable lines that have commensurable squares shown to have
infinite but periodic anthyphairesis.

This highly non-trivial theorem was rediscovered in the 18th century by Euler [19]
and Lagrange [42, 43].

4.2.2 Theaetetus’ theory of ratios of magnitudes based on equal anthyphairesis.

Theaetetus’ definition of equality of ratios for magnitudes. Two pairs a, b and
c, d of magnitudes are analogous (a=b D c=d ) if Anth.a; b/ D Anth.c; d/, where
Anth.a; b/ is the sequence of successive quotients of the anthyphairesis of a to b.

That there was a pre-Eudoxian theory of ratios of magnitudes with this definition
is mentioned by Aristotle in the Topics 158b24–35. The definition can be seen to
be a direct generalization of the Pythagorean definition of analogy, employing the
Euclidean algorithm (Definition VII.21 and Proposition VII.1 & 2 of the Elements):

a=b D c=d if and only if, setting k D greatest common divisor of a, b
and l D greatest common divisor of c, d , there are numbers m, n, such
that a D mk, b D nk, and c D ml , d D ml , since from the Euclidean
definition it is evident that Anth.a; b/ D Anth.c; d/.
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4.2.3 Theaetetus’ finitization of the infinite. Theaetetus in Book X of the Elements
introduced a Postulate in the form of

Definition X.3: A line a is rational (“rhetos”, with logos, ratio), resp. alogos (with-
out logos, ratio), with respect to a given (“protetheisa”) line b if a2, b2 are commen-
surable, resp. incommensurable.

The basic Proposition, proved by making essential use of the palindromic periodi-
cal anthyphairesis theorem and certainly making no use of Eudoxus principle, is the
following pre-Eudoxian analogue of Proposition V.8 of the Elements:

if the pairs a, b and a; b0 have each periodic anthyphairesis,
and a=b D a=b0, then b D b0.

The Theaetetus Postulate/Definition X.3 determines a very restrictive class of pairs
of magnitudes for the Theaetetus theory of ratios of magnitudes, essentially those
having periodic anthyphairesis.

Exactly because of the restrictive Definition X.3/Postulate, Theaetetus theory con-
stitutes a Finitization of the Infinite, exactly in the sense that Postulate 5 in Euclidean
Geometry constitutes a Finitization of the Infinite. Indeed, from the definition alone
of the equality of ratios (when there is equality of anthyphairesis) a proof that the two
pairs of lines a, b and c, d are analogous (a=b D c=d ) cannot be obtained, since
we might have to go through an infinite number of steps to verify this equality, if
these anthyphaireses are infinite. But periodicity of the anthyphairesis for the pairs
allowed by Theaetetus’ definition of “rhetos”, exactly on account of Theaetetus’ theo-
rem, turns the number of steps in the search finite – and this is exactly the Finitization
of the Infinite effected by Theaetetus’ Definition/Postulate. The situation described
is analogous to the situation in Section 2 for parallelism: two lines cannot be shown
to be parallel only from Postulate 2, since an infinite number of constructions are
needed, and finitization there occurs with the introduction of Postulate 5.

4.3 The philosophical use of periodic anthyphairesis by the Pythagoreans, Zeno,
and Plato. The Pythagorean incommensurabilities have shaped Pythagorean philos-
ophy in terms of Finitizing the Infinite, Zeno exploited the Pythagorean Finitizing of
the Infinite for arguments in favor of the existence of “intelligible”, as his teacher Par-
menides wished, and Plato, aided by Theaetetus’ powerful mathematical discoveries,
greatly expanded the philosophical scope of both the Pythagoreans and the Eleatics,
and created a most potent philosophic system.
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4.3.1 The philosophy of the Pythagoreans shaped by the anthyphairetic proof
of incommensurability of the diameter to the side of a square. The mathematical
achievements of the Pythagoreans produced a Pythagorean philosophy that was in
terms of the Infinite and the Finitizing. However it was neither Arithmetic nor Eu-
clidean Geometry in general that produced this philosophy, but the Mathematics of
Incommensurability. The philosophy of the Pythagoreans was not shaped simply by
the discovery of the incommensurability, but by the method they followed for their
discovery, namely by showing that the anthyphairesis of the diameter to the side of
a square is infinite, with the similarity of the Gnomons acting as its Finitizer. In
consequence the Pythagoreans adopted as universal philosophical principles the In-
finite and the Finitizer. Details are given in Negrepontis [50], Negrepontis–Farmaki,
2019 [52, Chapters 7 and 9].

4.3.2 Zeno’s paradoxes exploit the Pythagorean infinite and finitizing. Zeno used
the Pythagorean discoveries on incommensurability and their anthyphairetic proof as
the model for constructing his paradoxes and arguments in support of the theory of
his teacher Parmenides on the existence of, in Plato’s subsequent language, “intelli-
gible” Beings, separate and superior to the sensible entities. All of Zeno’s famous
paradoxes and arguments aim at showing, by contradiction, that the “real, intelligible
Being”, which has already taken the form of the philosophical analogue of a dyad of
lines in periodic anthyphairesis, is distinguished from the sensible Beings.

The near-contradictory properties that Zeno uses to separate the intelligible from
the sensibles, such as One (in sense of self-similarity) and Many (Fragment B1),
Motion and Rest simultaneously (Third paradox of motion), Similar and Dissimilar
simultaneously, infinite and finite simultaneously (Fragment B3), coincide with the
properties of the intelligible One of the Second Hypothesis in the Platonic dialogue
Parmenides, making clear that Zeno’s true Beings are governed by the Principles
of the (anthyphairetic) Infinite and the Finite, and rendering Zeno’s arguments, both
(a) philosophical arguments inspired from the Pythagoreans’ discovery of incommen-
surability and (b) the principal precursor of Plato’s philosophy (Negrepontis [47]).

4.3.3 Plato’s philosophy is centered on a philosophic analogue of the finitiza-
tion of the infinite anthyphairesis of incommensurability. In earlier dialogues the
Finitization is the Logos Crierion of anthyphairetic periodicity, in later the quadratic
commensurability, leading by Theaetetus’ theorem to anthyphairetic periodicity.

Plato imitated philosophically Zeno and mathematically the Pythagoreans and
Theaetetus, to form his theory of Platonic Ideas, a theory whose model is periodic
anthyphairesis, and which dominated human thought for many centuries.

In the Parmenides the One of the Second Hypothesis, the paradigmatical intelli-
gible Being, is the dyad One, Being, initially in the philosophic analogue of Infinite
anthyphairesis, finitized by the Logos Criterion into a periodic one. The same form of
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the Finitization, an evolution from the Pythagorean Finitization in terms of Gnomons,
can be found in the Politeia, Meno, Phaedo, Sumposion, Sophistes.

In the later dialogues Plato modified the Pythagorean Finitizing, keeping the same
Infinite, exactly taking into account Theaetetus’ theorem on quadratic incommensu-
rabilities (Section 4.2.1). Thus now the Finitizing principle is the second condition in
Theaetetus’ Theorem, stating if a, b are incommensurable lines, such that a2, b2 is
commensurable, then the anthyphairesis of a, b satisfies the Logos Criterion of peri-
odicity and in fact the anthyphairesis is palindromically periodic; and by Theaetetus’
Theorem, the new Theaetetean-type Finitizing principle “a2, b2 is commensurable”
implies the old Pythagorean one, the Logos Critrion of periodicity. The later di-
alogues Politicus, Philebus, Timaeus bear the modifying influence of Theaetetean
Mathematics.

A careful reading of the Philebus 23e–25e reveals that the Philebean Finite co-
incides with the commensurable, and the Philebean Infinite the incommensurable
(Negrepontis [49]). In the Double Measurement (Metretike) passage 283b–287b of
the Politicus it is made clear that the intelligible Platonic Being is a philosophic ana-
logue of a dyad a, b such that a2; b2 is commensurable and a, b is incommensurable,
exactly satisfying the hypotheses of Theaetetus’ theorem (Section 4.2.1).

4.3.4 Plato’s paradoxes exploit the infinite and finitizing of periodic anthyphaire-
sis. The paradoxical Finitizing the Infinite nature of periodic anthyphairesis was well
understood by Plato, who exploited it at the most in the dialogue Parmenides. He im-
itated some of the classical paradoxes of Zeno, for example, Zeno’s third paradox
of motion (the arrow paradox), stating that this true Being is both at rest and in mo-
tion, is repeated for the Platonic Ideas in the Parmenides 145e7–146a8. In fact, the
Parmenides is a work full of scandalously paradoxical statements. An example will
suffice:

The One [of the second hypothesis, the paradigm of a Platonic Idea] is
both younger and older than itself and the others, and is neither younger
nor older than itself and the others (Parmenides 151e3–155c8)

These philosophical paradoxes have confused Platonic readers from antiquity down to
the present day. Many modern scholars regard the whole of Parmenides as nothing but
a bunch of contradictory statements, not realizing that they are perfectly consistent,
but paradoxical, appearing to be contradictory, exactly because of their proximity to
the contradictory.
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5 The full model of the real numbers but with a weak finitization
(principle of the least & Eudoxus principle) replaces the Theaetetus
narrow model of the real numbers with strong finitization
(anthyphairetic periodicity)

Even though Theaetetus had an internally near perfect mathematical system and Plato
built on it the most powerful and influential philosophical system ever conceived,
nevertheless it was soon realized that mathematically it was too narrow and inflexible.

The later part of Greek mathematics (Archytas, Eudoxus Archimedes) is best in-
terpreted as an early preparation for the introduction of Dedekind cuts and the con-
struction of the second full model of the real numbers and of Calculus.

Archytas moves away from proofs of incommensurability by periodic anthyphaire-
sis, relying only on the Principle of the Least, producing incommensurabilities, not
only quadratic as Theaetetus had, but also cubic as Theaetetus could not have, with-
out any recourse to anthyphairesis, in fact employing only the arithmetical Principle
of the Least, and the arithmetical Proposition VII.27. Book VIII of the Elements is
essentially due to Archytas; his arithmetical non-anthyphairetic proofs of quadratic
and cubic incommensurabilities are based on Propositions in Book VIII, themselves
consequences of Proposition VII.27 (if a; b are relatively prime numbers, then a2; b2

and a3; b3 are relatively prime).
Eudoxus, in order to develop his theory of ratios of magnitudes in Book V of

the Elements, found necessary to introduce Eudoxus Principle (Definition V.4 of the
Elements), essentially a Postulate, namely the statement

For any two magnitudes a and b, there is a natural number n such that
a < nb;

thus the set fnW n D 1; 2; : : : ; nb < ag is always finite, thus finitizing infinity, since
there is absolutely no reason for this set to be a priori always finite. The best way to
realize the very weak finitization effected by Eudoxus Principle is to see this principle
in action in Proposition X.1 of the Elements: it is shown there that Eudoxus Principle
is equivalent to the statement that the sequence (1=n), and therefore the sequence
(1=2n), converges to zero, precisely in the modern “epsilontic” definition!

Eudoxus develops a general theory of ratios of magnitudes, in Book V of the El-
ements, the precursor of the real numbers, by Dedekind cuts on the rationals, relying
only on the arithmetical Principle of the Least and a most weak condition of com-
pleteness, the Eudoxus Principle (Definition V.4), by which he is able to prove the
fundamental Propositions V.8, and X.1.

Being a finitization of the infinite, Eudoxus’ condition is expected, according to
our approach, to have some deductive power. Indeed, Book VI of the Elements on
geometric similarity is a remarkable application of two Finitizations, the Fifth Postu-
late acting in the straight direction and the combination of the Principle of the Least
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and Eudoxus Principle in the converse (as, e.g., with the so-called “Thales theorem”,
Propositions VI.2, 4, 5 of the Elements); and, the method of Exhaustion, in Book XII
of the Elements, greatly extended by Archimedes, the precursor of modern Integral
Calculus, is also an application of these finitizations.

On the other hand, remarkable as Eudoxus’ theory is for its generality, as it has
moved much further than the Theaetetus–Plato restricted model of the reals, it still
is very weakly finitized; so the genius of Archimedes is needed to be able to achieve
the quadrature of the parabola, namely to find the integral of f .x/ D x2. The Arabs
(e.g., Ibn al-Haytham), trying to extend Archimedes method, expended great efforts
for the integration of f .x/ D x4, while today a lowly student of Calculus, equipped
with the Fundamental Theorem of Calculus, regards this as a simple exercise.

6 The full model of the real lines with strong finitization,
the completeness axiom (Dedekind), calculus,
mathematical analysis

In the 17th century Infinitesimal Calculus in its modern form was invented by New-
ton and Leibniz, with the contribution of many predecessors, and its fundamental
importance, theoretical and in applications in Physics, was immediately recognized.
Integral Calculus was related to the ancient method of Exhaustion, but for two cen-
turies it was not realized that its foundation should be related to the foundation of
the method of Exhaustion, namely Eudoxus theory of ratios. It was only in 1870,
after the advent of Cantor’s Set Theory that it was finally realized by Dedekind that
the foundations of Calculus should be the real numbers, defined as Dedekind cuts
on the rationals, a definition practically identical with the Eudoxian Definition V.5 of
the Elements. The crucial new element, discovered by Dedekind, was the Axiom of
Completeness, postulating the existence of the supremum of every nonempty bounded
subset of the real numbers.

Completeness is a strong Finitization of the Infinity of real numbers. The most
effective and convincing way to see this is by considering its topological equivalence:

Every closed and bounded interval of the real numbers is compact,

namely, every cover of the interval with any infinite collection of open intervals al-
ready has a finite subfamily that covers the interval. This certainly is a completely
new and different type of Finitization of the Infinite, compared to the ancient ones.
Whereas the Theaetetus–Plato finitization finitizes the infinity that may exist within
each ratio, within every real number considered as a continued fraction, by periodic-
ity, on the contrary Completeness finitizes whole intervals or even subsets of the reals
by compactness.
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Within a short time Calculus was based on mathematically firm foundations. The
completeness of the real numbers has proved to have extremely strong deductive
power, and filled with seeming paradoxes, indicating that it is a close approximation
of the contradictory.

The deductive power of the completeness property has been proved legendary.
Real numbers were used for the logically impeccable foundation of Calculus (contin-
uous real-valued functions defined on the reals, Integral Calculus, Differential Calcu-
lus, and the Fundamental Theorem of Calculus) for the first time since Newton and
Leibniz (Spivak [75]); for the foundation of Analytic functions (rigorous proof of
Cauchy’s integral theorem), Mathematical Analysis, Diferential Equations.

The Ascoli–Arzela theorem is an application of the completeness property of real
numbers. The original deductive power of completeness is transferred to the Ascoli–
Arzela theorem. Important applications of the Ascoli–Arzela theorem is the charac-
terization of the compact subsets of Lp, and the Rellich–Kondrachov compactness
theorem for Sobolev spaces. The reader would consult Brezis [5].

Together with its enormous deductive strength, the completeness property, as
a near-contradictory statement is expected to have paradoxical consequences. There
do indeed appear scandalously paradoxical consequences: such as Baire’s category
theorem, almost all reals are irrationals, in fact transcendentals, the exponential func-
tion is an exotic self-similar object (f 0 D f ), almost all, in the sense of Baire cat-
egory, continuous functions are nowhere differentials. Baire’s Category Theorem is
essential in the proof of basic theorems in the theory of Banach spaces, the open
mapping theorem and the uniform boundedness principle.

The near contradictory Calculus, especially in its beginning, when it had no firm
foundations, appeared outright contradictory; thus G. Berkeley, The Analyst, 1734,
wrote:

The fallacious way of proceeding to a certain Point on the Supposition
of an Increment, and then at once shifting your Supposition to that of
no Increment . . . Since if this second Supposition had been made be-
fore the common Division by 0, all had vanished at once, and you must
have got nothing by your Supposition. Whereas by this Artifice of first
dividing, and then changing your Supposition, you retain 1 and nxn�1.
But, notwithstanding all this address to cover it, the fallacy is still the
same [3, p. 25].
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7 The axiom of choice is a finitization of the infinite
in the axiomatization of Zermelo–Fraenkel set theory

The Axiom of Choice, an Axiom of Zermelo–Fraenkel Set Theory, is equivalent to the
well-ordering principle (every set has a well-ordering, namely a total ordering such
that every non-empty subset has a least element), and also equivalent to the Principle
of Transfinite Induction (every set X has a well ordering, such that if A is a subset
of X , with (1) the smallest element of X in the well-ordering is in A, and (2) if x
is any element of X such that every y  x is in A, then x is in A, then A D X ).

Of course the general well-ordering Principle is a generalization of the well-
ordering of the natural numbers, and the principle of transfinite induction the cor-
responding generalization of the principle of mathematical induction.

The principle of mathematical induction is, as already mentioned in Section 3,
equivalent to the statement that the natural order of the natural numbers is a well-
ordering. Thus the Axiom of Choice is a vast generalization of the principle of math-
ematical induction to every set.

It is clear that with a reasoning analogous to the reasoning in Section 3 on the
principle of mathematical induction, we conclude that an impossible problem of infi-
nite nature, has been turned, by the principle of transfinite induction, into a perfectly
feasible procedure in two steps; and, thus, the Axiom of Choice is a Finitization of
the Infinite vastly stronger than the principle of mathematical Induction, and therefore
a near-contradictory statement.

As expected, the Axiom of Choice has great deductive power (e.g., every linear
space has a Hamel base, the Stone representation Theorem for Boolean Algebras,
Tychonoff’s Theorem for the product of compact spaces, Krein–Milman’s Theorem
on extreme points, the Hahn–Banach Theorem).

Being a near-contradictory statement, the Axiom of Choice does not only have
great deductive power, but produces striking paradoxes, such as the existence of
Lebesgue non-measurable set, the Hausdorff paradox, the Banach–Tarski paradox.

8 The Stone–Čech compactification ˇN of the natural numbers
is finitizing the infinite of the natural numbers N

The combination of two powerful finitizing principles, already employed in Antiquity
(e.g., “Thales” theorem is the result of combining the Fifth Postulate with Eudoxus
principle and the Least Principle) can be expected to have strong and paradoxical
consequences. The combination of the Axiom of Choice and the completeness of
the reals produces strong consequences in Functional Analysis, such as the Uniform
Boundedness Principle, the Hahn–Banach Theorem, Alaoglu’s Theorem.
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8.1 The space of the Stone–Čech compactification, the space of ultrafilters of nat-
ural numbers. One especially powerful consequence of these two finitizing Princi-
ples is the Stone–Čech compactification ˇN of the natural numbers, arguably the
most fascinating object in Mathematics,

The construction of ˇN:
Let I D Œ0; 1�N, as an index set (of the cardinality of the continuum). By the

Axiom of Choice (Tychonoff Theorem) and the completeness property (Œ0; 1� is com-
pact), Œ0; 1�I is a compact space.

We defineˆWN ! Œ0; 1�I by n! .f .n//f 2I . Thenˆ is an embedding of N, the
closure of ˆ.N/ in the product is compact, and this is, by definition, the Stone–Čech
compactification of N, denoted by ˇN.

ˇN has, by its very construction above, a universal extension property: for every
f WN ! ˇN, there is a unique continuous extension f �WˇN ! ˇN.

Definition. An ultrafilter on N is, by definition, a family of non-empty subsets of N,
closed under the Finite Intersection Property and under taking supersets.

Proposition. ˇN is the space of all ultrafilters on N (Comfort–Negrepontis [13]).

Thus ˇN, because it is a compact space in which N is dense, can be seen as a finiti-
zation of the infinite set of natural numbers, and in fact a gigantic finitization.

Since ˇN is a very strong finitization of the infinite, we expect that ˇN will be an
object of great deductive power, and since it is a near-contradictory object we expect
that it will produce strong paradoxes. Here are some indications of the deductive and
paradoxical power of ultrafilters.

8.2 A non-trivial ultrafilter exists by the axiom of choice and it has the power
to prove Ramsey’s theorem.

Ramsey’s Theorem (1930 [66]). For every n, and every finite partition (coloring)
of ŒN�n (D fF WF finite subset of N of cardinality ng), there is an infinite set A such
that ŒA�n is monochromatic.

Ramsey’s Theory is about partitions of large structures, and thus generalizes the pi-
geonhole principle. According to Terence Tao [77, p. 101],

ultrafilters can be used to simplify a lot of infinitary Ramsey theory, as
all the pigeonholing has been done for you in advance.

In fact, there is a simple proof of Ramsey’s infinitary theorem, making use of just one
non-trivial (non-principal) ultrafilter.
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8.3 An idempotent ultrafilter exists (Galvin, Glaser) by the axiom of choice
and compactness.

Lemma 8.1. ˇN is a left-continuous compact semigroup [Applying this universal
extension property to the operation of addition CWN �N ! ˇN, in every variable
separately, we obtain in two steps the extension � ofC to ˇN � ˇN. The operation �

turns ˇN into a compact semigroup, and � is separately continuous in one of the two
variables (say left continuous)].

(Note here that additionC does not extend to a fully continuous function on ˇN�ˇN,
since ˇ.N �N/ is different, richer than ˇN � ˇN.)

Explicit definition of p�q. Let p; q be ultrafilters on N. We say that A is in p�q if
and only if fnWA� n is in qg is in p (where A� n is the translation of A by �n), i.e.,
p�q D fAWB in q implies A � B in pg.

Fortunately separate continuity in one variable provides a gate, straight but just enough
open, for the paradoxical object to be created. Exactly what was needed was a simple
but remarkable result that already existed:

Lemma 8.2 (Ellis [17]). If .K;� / is a nonempty compact semigroup, such that the
operation � is separately continuous in one of the two variables, then there is an
idempotent element p of K, namely p�p D p.

Proof. By Zorn’s lemma (equivalent to the Axiom of Choice) there is a minimal
nonempty compact subsemigroup. This must necessarily consist of one only element,
and this element must be necessarily idempotent.

Theorem. There is an idempotent ultrafilter p, p D p�p, on N.

Now an idempotent ultrafilter is an exotic and paradoxical, an almost contradictory
object, and exactly for this reason, a most valuable object. Its existence makes essen-
tial use of the finitizing compactness of ˇN.

Remark. Let p be an idempotent ultrafilter. Then p is clearly non-trivial and A 2 p
if and only if fnWA � n 2 pg 2 p if and only if B 2 p implies A � B 2 p. For any
A 2 p, set A� D fnWA � n 2 pg, thus A� 2 p.
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8.4 An idempotent ultrafilter has the power to prove Hindman’s theorem.

Hindman’s theorem (1974 [38]). If N is finitely colored, then there is an infinite
monochromatic subset X of N such that all distinct finite sums of X are monochro-
matic.

Hindman’s theorem was a remarkable result in infinitary combinatorics, but his proof
was opaque. Then one of these miracles of Mathematics happened. It appears that
Galvin had realized that what was needed for a proof of Hindman’s theorem was the
existence of an idempotent ultrafilter; and Glaser eventually noted that a proof of the
existence of such an object was already essentially known, by Ellis’ theorem.

Proof (Galvin/Glaser, 1974, unpublished; appeared in [12]). Let p be an idempotent
ultrafilter on N. ChooseA0 2 p such thatA0 is monochromatic; choose a0 2 A0\A�0 .

Set A1 D A0 \ .A0 � a0/ n fa0g; choose a1 2 A1 \ A�1 .
In general, suppose An 2 p, and an 2 An \ A�n.
Set AnC1 D An \ .An � an/ n .an/; choose anC1 2 AnC1 \A�nC1.
Set X D fa0; a1; a2; : : :g.
Then all finite (non-repeating) sums of X are monochromatic.
E.g. a0 C a2 C a4;

a4 2 A4 
 A3;
a2 C a4 2 A2 
 A1
a0 C a2 C a4 2 A0:

More general Theorems: Milliken [45], Taylor [78], Farmaki–Negrepontis [20] (gen-
eral Milliken–Taylor theorem for all Schreier sets).

8.5 A minimal idempotent ultrafilter exists by repeated use of the axiom of choice
and compactness and it has the power to prove van der Waerden’s theorem. But
one can do even better, ascending to an even more paradoxical object.

The Furstenberg–Katznelson theorem (1989 [25]). There is an idempotent ultra-
filter on N, minimal in the ordering among ultrafilters: p � q if p�q D p.

The consequences of the existence of such an object are rich; some of them are
(a) van der Waerden’s theorem [80]: If N is partitioned (colored) in two or more
finitely many sets, then one of them contains arbitrarily long arithmetical progres-
sions; (b) Hales–Jewett’s Theorem [34], an important combinatorial analogue of van
der Waerden theorem; (c) Carlson [7] and Furstenberg–Katznelson [25] (Ramsey in-
finitary combinatorics); (d) Farmaki–Negrepontis [21] 2008 (general Ramsey theory
for all Schreier sets).

For many more results about ultrafilters consider J. Konieczny [41].
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9 Gödel’s program for the continuum hypothesis suggests that near-
contradictory axioms of very large cardinals are added to ZFC

Frege’s inspired error, resulting in contradiction by assuming the existence of a class
of elements that cannot in general be a set, and quickly corrected by Russell, may have
eventually prompted Gödel to an exciting Finitization of the Infinite in Set Theory.

9.1 Frege’s inspired error and Russell’s discovery. The collection of all sets is
(a proper class and) not a set. This was discovered when Frege committed his famous
inspired mistake by introducing as an axiom in his logical system Basic Law V (Naive
Comprehension Schema for Extensions): 9y8x.x 2 y � ˆ.x//, namely for every
formulaˆ.x/ there is a set y, the extension ofˆ, such that y D fxWˆ.x/ is satisfiedg.

Just as Frege’s work [23] was about to go to press in 1903, Bertrand Russell [69]
wrote to Frege, showing that Russell’s paradox results from Frege’s basic law V.
Indeed apply Frege’s comprehension law V for the self-referential, but perfectly well-
defined formula ˆ.x/: “x is not an element of x”. By Frege’s law, there is a set A of
all the sets x, such that x is not an element of x. Then it can be seen that the set A
both is and is not an element of itself, and thus to assume its existence is contradictory
and inconsistent.

Thus the hypothesis that there is a set of all sets is a contradictory statement.

9.2 Cantor’s obsession with the continuum hypothesis. One of the outstanding
problems of Set Theory is the Continuum Hypothesis (CH), the statement that every
subset of the reals is either countable or with cardinality equal to that of the set of
reals. Cantor believed the continuum hypothesis to be true, was obsessed by it, and
tried for many years to prove it, in vain. It became the first on David Hilbert’s list of
important open questions that was presented at the International Congress of Mathe-
maticians in the year 1900 in Paris. Kurt Gödel [29], 1938 proved Consistency with
ZF. Paul Cohen [8–10] proved independence from ZF.

9.3 Gödel’s program on CH. Gödel [30], in 1947, most surprisingly, suggested
that the solution of CH might be decided by the introduction in set theory of axioms
for large cardinals.

This came to be referred to as Gödel’s program.
At first one is surprised: why should assumptions of existence of very-very large,

enormous sets, have any bearing on the CH, a question about subsets of the real
numbers? The rationale for Gödel’s program was not explained by him, but within
our framework it can be understood as follows:
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9.4 Our interpretation of Gödel’s program: Large cardinals are near contra-
dictory entities approximating the contradictory “set of all sets”. We can now
explain Gödel’s suggestion as follows: the continuum hypothesis can possibly be
answered by postulating the existence of large cardinals (such as the strongly inac-
cessible), exactly because (sets with) these large cardinals are the (hopefully) consis-
tent near-contradictory objects approximating the truly contradictory set of all sets.
Thus, the principle of the near-contradictory that we propose assumes a fascinating
turn with the appearance of an entirely new approximation of the contradictory in Set
Theory, and specifically in the relation to the Continuum Hypothesis. Gödel in effect
turns the rejectable Frege’s outright contradictory statement into a fully acceptable
creative near-contradictory one!

9.5 The success of Gödel’s program for the projective hierarchy (Solovay, She-
lah and Woodin).
� The projective hierarchy

Gödel’s idea gave rich results in the class of Projective subsets of the reals. The class
of projective sets, ramifies in an infinite hierarchy of length ! (= the first infinite or-
dinal), the projective hierarchy, consisting of the Borel, the analytic (A) (continuous
images of Borel), the co-analytic (CA) (complements of analytic), PCA (continuous
images of CA), CPCA (complements of PCA), and so on ad infinitum, classes of sets.

� The perfect set property for analytic sets:

Souslin (1917). Every Borel or even every analytic (by a result of Souslin) subset of
the reals has the perfect set property (namely, it is either at most countable or else
contain a homeomorphic copy of the Cantor set). Thus CH is true for the class of
analytic sets.

� Solovay’s success on Gödel’s program with measurable cardinals:

The first success of Gödel’s program was by Solovay [73, 74]: If there is a measur-
able cardinal [an extremely large hypothetical cardinal], then every PCA (continuous
image of complement of analytic) set has the perfect set property, and thus CH is true
for the class of PCA sets.

� Shelah–Woodin’s success on Gödel’s program with supercompact cardinals:

Solovay conjectured that other much larger cardinals could possibly settle CH for
the higher levels of the projective hierarchy. This started the quest for much greater
cardinals (Woodin, supercompact cardinals).

Theorem (Shelah–Woodin [71]; Woodin [88]). If there is a supercompact cardinal,
or, more generally, a proper class of Woodin cardinals, then every set of reals in
L(R), the smallest transitive inner model of set theory that contains all the reals, in
particular every projective set, has the perfect set property, and thus CH is true for
the whole class of projective hierarchy.
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9.6 On the verge of inconsistency: General CH & large cardinals. At present
there does not seem that still greater cardinals will decide the full CH hypothesis.
But supercompact cardinals are here to stay in the search for the truth value of CH.
Woodin [89] is looking for the so-called Axiom V =Ultimate L, an inner model of
ZFC with a supercompact cardinal, which if realized will decide CH in the positive;
and, the rival position of set theory, based on the so-called Martin’s Maximum ax-
iom by Foreman–Magidor–Shelah [22, 88], and deciding CH in the negative, can be
shown to be consistent from the existence of a supercompact cardinal

It seems fair to say that at present Set Theory is trying to find solutions to open
questions, such as the 140 year old CH, solely with near-contradictory axioms of
very-very huge cardinals, flirting in a rather scandalous way with the contradictory.
The title of a recent paper by some great experts on the field is indicative: On the
Verge of Inconsistency, [27].

10 Conclusion: The near-contradictory nature of mathematics

We have shown that a substantial part of Mathematics (ancient, classical, current)
receives its deductive power by approximating the all-powerful contradictory. It ap-
pears that the only source of deductive power in Mathematics is some suitable approx-
imation of the contradictory, most of the time in the form of Finitizing an Infinity.

We tend to believe that the basic mathematical axioms express the ultimate truth
in Mathematics and that their deductive power leads to the discovery of mathematical
truths (e.g., the completeness property of the reals leads to the proof of the Funda-
mental Theorem of Calculus); and we also tend to believe that the contradictory is
false, lying at the antipodes of mathematical truths. But in fact our examination has
led us to a more complex and disquieting and even untenable position: the deeper
and stronger mathematical truths are approximations, surely suitable and genial but
approximations all the same, of the contradictory, that finitize the infinite, barely es-
caping contradiction.

10.1 Gödel’s incompleteness theorem. In this general scheme, Gödel’s Incom-
pleteness Theorem, and more generally the existence of undecidable statements, such
as the Continuum Hypothesis in Set Theory, can be seen as a positive, creative force,
contributing in pushing Mathematics towards more powerful and near-contradictory
approximations.

We have seen, in Section 3.1, that Greek mathematics had proofs by unfinitized
induction. Thus the Pell statement P(n): q2n D 2p2n C .�1/n (where pn, qn are the
side and diameter numbers) had a proof for each n, but the statement (8n)P(n) had
no proof. Gödel [28], in 1931, proved that even in Peano’s Arithmetic (assuming
the fully finitized Principle of mathematical Induction), there are (Gödel) statements
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G, such that G(n) has a proof for each n but (8n)G(n) has no proof. Such state-
ments were shrouded in mystery, until Paris and Harrington [60] exhibited a Ram-
sey type Gödel statement. A mathematical, rather than a model-theoretic, proof was
given by Ketonen, Solovay [40], and can be found in R. L. Graham, B. L. Rothschild,
J. H. Spencer [32]). Thus Gödel’s statements, and in general statements that are un-
decidable, namely neither provable nor refutable, in an axiomatic system, and thus
proof-unfinitized, make imperative the need for a more powerful system, namely for
a closer approximation of the contradictory, in which they have a proof, and are thus
proof finitized.

11 Beauty in mathematics and beauty in general

Many mathematicians almost instinctively describe either a mathematical discovery
of their own or a mathematical result that they studied and understood as “beautiful”;
when pressed to explain they are often at a loss to provide a reasonable explanation
of their feeling. Since our present study has revealed an underlying feature of the
nature of Mathematics, the finitization of the infinite, the approximation of the con-
tradictory, it would be expected that the reason for Beauty in Mathematics lies with
its paradoxical nature, as well.

11.1 Beauty itself in Plato’s Sumposion 210a4–212a7 in terms of “ephexes” and
“exaiphnes”. We return to Plato’s Finitization of the Infinite (Section 4.3), which
according to our interpretation corresponds to the description of the Platonic Idea as
the philosophic analogue of periodic anthyphairesis. Plato, in the Sumposion 210a–
212a, describes the ascent to ideal Beauty as at first “ephexes”, a process gradual,
sequential, and painful, suddenly and unexpectedly “exaiphnes” culminating with the
revelation of knowledge and Beauty.

He who would proceed in true opinion (ton orthos ionta) towards Beauty
must not merely begin from his youth to proceed (ienai) to beautiful
bodies (epi ta kala somata). In the first place, indeed, if his conductor
guides him to true opinion (orthos hegetai), he must be in love with
one particular body, and beget beautiful “logoi” (gennan kalous logous)
therein;

but next he must remark how the beauty attached to this or that body
is cognate to that which is attached to any other, and that if he means to
ensue beauty in form, it is gross folly not to be of the opinion (hegesthai)
as one and the same the beauty belonging to all; and so, having grasped
this truth, he must make himself a lover of all beautiful bodies, and
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slacken the stress of his feeling for one by despising it and being of the
opinion (hegesamenon) that it is a trifle.

But his next advance will be to set a higher opinion (timioteron hege-
sasthai) on the beauty of souls than on that of the body, so that however
little the grace that may bloom in any likely soul it shall suffice him for
loving and caring, and for begetting (tiktein) and soliciting such “logoi”
as will tend to the betterment of the young; and that finally he may be
constrained to contemplate the beautiful (kalon) as appearing in our cus-
toms (epitedeumasi) and our laws (nomois), and to behold it all bound
together in kinship and so be of the opnion (hegesetai) the body’s beauty
as a slight affair.

From customs he should be led on to the branches of knowledge,
that there also he may behold a province of beauty, and by looking thus
on beauty in the mass may escape from the mean, meticulous slavery of
a single instance, where he must center all his care, like a lackey, upon
the beauty of a particular child or man or single customs; and turning
rather towards the vast sea (to polu pelagos) of the beautiful may by
contemplation of this bring forth in all their splendor many fair fruits
of discourse and meditation in a plenteous crop of philosophy; until
with the strength and increase there acquired he descries a certain single
knowledge connected with a beauty which has yet to be told. And here,
I pray you, said she, give me the very best of your attention.

When a man has been thus far taught (paidagogethei) in the matters
of love (erotika), passing from view to view of beautiful things, in the
right, true sequential, succeeding order (ephexes te kai orthos, 210e3),
as he draws to the close of his dealings in love, suddenly (exaiphnes,
210e4) he will have revealed to him, a wondrous (thaumaston) vision,
beautiful in its nature; and this, Socrates, is the final object of all those
previous pains. 210a4–e6

Do but consider, she said, that there only will it befall him, as he sees
the beautiful through the cause that makes it visible, to generate not illu-
sions of virtue (eidola aretes), since his contact is not with illusion, but
true examples of virtue, since his contact is with truth. So when he has
begotten (tekonti) a true virtue and has reared it up (threpsamenoi) he is
destined to win the friendship of Heaven; he, above all men, is immortal
(athanatoi). 212a2–7 [translation by H. N. Fowler [62, volume 9], with
modifications by the authors]

11.2 The interpretation of Plato’s nature of beauty in terms of mathematical
finitization of the infinite. Now we will interpret Plato’s vision of the Idea of Beauty
and the immortality it bestows on the one who obtains the knowledge and begets
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such beauty. The key description is the terms of “ephexes” and “exaiphnes”. The
“ephexes” describes the successive stages of true opinion (doxa, hegetai, ienai, . . . ),
describes the infinite anthyphairetic Division of an intelligible Being, while the “ex-
aiphnes” is the Logos Criterion, namely the Logos of the periodicity of the intelligible
anthyphairesis, equivalently, the Collection, namely, the equalization of parts result-
ing from periodicity.

Next, we realize that the dramatic description given in the Sumposion is valid not
only for the Idea of Beauty, but for every intelligible Being. For example in the Meno,
the “ephexes” is likened to a travel from Athens to Larisa (97a), and the “exaiphnes”,
the sudden and unexpected moment that knowledge is attained by the recollection
(anamnesis) (98a), by the repetition of Logos.

In general, an intelligible Being is a philosophic analogue of the mathematical
periodic anthyphairesis, and “ephexes” is an initial segment of the Infinite anthy-
phairetic division, while “exaiphnes” is the Finitization of the Infinite, occurring ex-
actly at the moment of the completion of the anthyphairetic period, and the appear-
ance of the repetition (recollection) of the Logos, namely the establishment of the
Logos Criterion.

The infinite anthyphairetic division is finitized by the finiteness of the period of
the “logoi”/ratios of successive remainders of the anthyphairesis. Thus Plato’s model
for Ideal Beauty is mathematical, periodic anthyphairesis. Now it becomes clear that
we sense Beauty and attain Knowledge “exaiphnes”, abruptly, exactly at the moment
that we achieve logos of periodicity, namely exactly at the moment of finitization of
the infinite. So at the end, general beauty, according to Plato, is described in terms of
a philosophical analogue of a purely mathematical finitization of the infinite, namely
periodic anthyphairesis. This finitization coincides with our sudden and unexpected
acquisition of knowledge.

The feeling of achieving, of participating in, Immortality that Plato mentions at
Sumposion 212a results presumably because of the finitization, which brings within
human accessibility the hitherto unknown and inaccessible infinite.

11.3 Mathematicians describe mathematical discovery and Beauty in terms
of the mathematically inspired Platonic “ephexes/exaiphnes” model. We will
now examine and try to explain the aesthetic pleasure and enjoyment felt when we
study and try to understand the Mathematics created by others, or when Mathematics
is created; and the way various mathematicians have described mathematical dis-
covery, and Beauty in Mathematics. Since, according to our proposal, the funda-
mental feature of Mathematics is the paradoxical, near-contradictory nature of its
basic hypotheses, we expect that Beauty in Mathematics must be a result of this near-
contradictory power of Mathematics.

Theaetetus’ inspiration to Finitize the Infinite anthyphairetic division by “Logos”
and periodicity:
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Theaetetus: Theodorus here was drawing some figures for us in demon-
stration about powers (dunameon), showing that squares containing three
square feet and five square feet are not commensurable (mekei ou sum-
metroi) in length with the one foot, and so, proceeding with each one in
its turn separately (kata mian hekasten proairoumenos), up to the square
containing seventeen square feet, and at that he stopped.

Now, since each of the powers appeared to be infinite in multitude,
we had an inspiration (hemin eiselthe ti toiouton) to attempt to collect
this multitude into one (sullabein eis hen), by which we could call each
of the powers (Plato, Theaetetus 147d3–e1).3

Archimedes’ sudden revelation, “Eureka”, according to Vitruvius (De Architectu-
ra [82, Book IX, 10]):

But a report having been circulated, that some of the gold had been ab-
stracted, and that the deficiency thus caused had been supplied with sil-
ver, Hiero was indignant at the fraud, and, unacquainted with the method
by which the theft might be detected, requested Archimedes would un-
dertake to give it his attention. Charged with this commission, he by
chance went to a bath, and being in the vessel, perceived that, as his
body became immersed, the water ran out of the vessel.

Whence, catching at the method to be adopted for the solution of the
proposition, he immediately followed it up, leapt out of the vessel in joy,
and, returning home naked, cried out with a loud voice that he had found
that of which he was in search, for he continued exclaiming, in Greek,
“Eureka”, (I have found it out)

Karl Friedrich Gauss spoke of “a sudden flash of lightning” [33, p. 15]:

Thus Gauss, referring to an arithmetical theorem which he had unsuc-
cessfully tried to prove for years, writes:

Finally, two days ago, I succeeded, not on account of my painful
efforts, but by the grace of God. Like a sudden flash of lightning, the
riddle happened to be solved. I myself cannot say what was the conduct-
ing thread which connected what I previously knew with what made my
success possible.

3[translation by H. N. Fowler [62], with modifications by the authors]
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Henri Poincaré spoke of “suddenness and immediate certainty” [33, pp. 13–14]:

Then I turned my attention to the study of some arithmetical questions
apparently without much success and without a suspicion of any connec-
tion with my preceding researches. Disgusted with my failure, I went to
spend a few days at the seaside and thought of something else.

One morning, walking on the bluff, the idea came to me, with just
the same characteristics of brevity, suddenness and immediate certainty,
that the arithmetic transformations of indefinite ternary quadratic forms
were identical with those of non-Euclidean geometry.

Godfrey Harold Hardy:

The mathematician’s patterns, like the painter’s or the poet’s must be
beautiful; the ideas like the colours or the words, must fit together in
a harmonious way. Beauty is the first test: there is no permanent place
in the world for ugly mathematics [37, p. 14].

What “purely aesthetic” qualities can we distinguish in such theo-
rems as Euclid’s4 or Pythagoras’s?5 I will not risk more than a few
disjointed remarks. In both theorems (and in the theorems, of course,
I include the proofs) there is a very high degree of unexpectedness, com-
bined with inevitability and economy. The arguments take so odd and
surprising a form; the weapons used seem so childishly simple when
compared with the far-reaching results; but there is no escape from the
conclusions [37, p. 29].

Thus Hardy speaks of “a very high degree of unexpectedness” and for “arguments that
take so odd and surprising a form.” Hardy [37] regards as a basic feature of a beautiful
theorem and proof in Mathematics its “unexpectedness”, the “surprise”, the sudden
revelation with which “truth” and understanding is attained, and everything is clari-
fied.

Timothy Gowers [31, p. 51]:

It is a notable feature of the [second] argument that it depends on a single
idea, which, though unexpected, seems very natural as soon as one has
understood it.

It often puzzles people when mathematicians use words like “ele-
gant”, “beautiful”, or even “witty” to describe proofs, but an example
such as this gives an idea of what they mean.

4Given in 11.4, Example 3
5Given in 11.4, Example 1
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Music provides a useful analogy: we may be entranced when a piece
moves in an unexpected harmonic direction that later comes to seem
wonderfully appropriate, or when an orchestral texture appears to be
more than the sum of its parts in a way that we do not fully understand.

Mathematical proofs can provide a similar pleasure with sudden rev-
elations, unexpected yet natural ideas, and intriguing hints that there is
more to be discovered.

Of course, beauty in mathematics is not the same as beauty in music,
but then neither is musical beauty the same as the beauty of a painting,
or a poem, or a human face.

According to Timothy Gowers the most important element that contributes to beauty
in Mathematics is the sudden, unexpected, the surprise, with which the revelation of
a proof, that leads to understanding and knowledge, is realized.

Andrew Wiles [87]:

Andrew Wiles likened the mathematical equivalent of experiencing the
rapture of beauty to walking down a path to explore a garden by the
great landscape architect Capability Brown, when a breathtaking vista
suddenly beckons. In other words, elegance in mathematics ‘is this sur-
prise element of suddenly see everything clarified and beautiful.’

Exactly in the same spirit Andrew Wiles likens mathematical beauty, employing the
image of someone walking in the road of one of the royal gardens created by the
great architect of landscapes Capability Brown, when suddenly, surprisingly, and un-
expectedly find himself in a view with which hitherto unclear and dark matters clear
up and reveal their structure.

We find that there is a wide and impressive agreement with the “ephexes/
exaiphnes” Platonic model. The Beauty of Mathematics is almost always con-
nected with the sudden and unexpected understanding. Since Plato was referring
to periodic anthyphairesis, a specific Finitization of Infinity, and since Mathemat-
ics, as we just saw, is grounded on various different Finitizations of Infinity, it
is difficult to avoid the conclusion that Plato and the ancient and modern Math-
ematicians have the Finitization of Infinity as their common ground. We then
associate mathematical Beauty with Finitization of Infinity.

Gian Carlo Rota [68] expresses a dissenting opinion:

Hardy’s opinion (expressed in his essay A mathematician’s apology) that
much of the beauty of a mathematical statement, or of a mathematical
proof, depends on an element of surprise, is, in my opinion, mistaken.

Nonetheless, despite the fact that most proofs are long, despite our
awareness of the need for an extensive background in order to appre-
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ciate a beautiful theorem, we think back to instances of mathematical
beauty as if they had been perceived by an instantaneous realization, in
a moment of truth, like a light-bulb suddenly being lit.

All the effort that went in understanding the proof of a beautiful the-
orem, all the background material that is needed if the statement is to
make any sense, all the difficulties we met in following an intricate se-
quence of logical inferences, all these features disappear once we be-
come aware of the beauty of a mathematical theorem, and what will
remain in our memory of our process of learning is the image of an in-
stant flash of insight, of a sudden light in the darkness. We would like
mathematical beauty to consist of such a sudden flash.

The phenomenon of enlightenment is seldom explicitly acknowl-
edged among mathematicians, for at least two reasons: First, enlight-
enment is not easily formalized, like truth or falsehood. Second, en-
lightenment admits degrees; some statements are more enlightening than
others.

It seems to us that Rota’s dissent may well be accommodated in the “ephexes” and
“exaiphnes” Sumposium scheme. Indeed, Rota’s process of enlightenment does not
correspond to the “exaiphnes”, but since enlightenment includes the pains (cf. “ponoi”
in Sumposion 210e6) and efforts that are needed for attaining understanding of Math-
ematics, and since it has “degrees” (like True Opinion in the Sumposion), Rota’s
enlightenment includes both the “ephexes” and the “exaiphnes” stage.

11.4 Mathematical proofs exhibit their beauty at the instant of finitization.
Hardy [37] examined two examples of proofs he considers beautiful from Greek
Mathematics, which we will now consider in I and III below; we add a few more.

I. Proposition X.117 of the Elements. The first example of a mathematical proof
that Hardy [37, pp. 19–20] regards as beautiful is the proof of the incommensura-
bility of a diameter to the side of a square. Hardy erroneously believes that this is
the original Pythagorean proof, but as we saw (in § 4.1) the Pythagorean proof was
anthyphairetic. The proof that Hardy has in mind was known in antiquity, in fact ap-
pears as a later addition to the Elements as Proposition X.117, and is the following:
Let a, d be the side and the diameter of a square, so that d2 D 2a2, and suppose that
d , a are commensurable. Then there are numbers m, n and a line segment c, such
that a D mc, d D nc. We then get the equation n2 D 2m2. Now, the basic point
of the proof is the possibility that we have to assume that additionally the numbers
m, n are relatively prime. Why we may assume that m; n are relatively prime? This
is not a matter of routine, and if it is presented as such all essence and beauty of
the proof evaporates. It is based on the construction of the greatest common divisor
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(Propositions VII.1 & 2 in the Elements); but this construction as we saw was based
on the Principle of the Least, a principle Finitizing the Infinite. Thus we may, and
do, assume that n2 D 2m2 and that m, n are relatively prime numbers. The rest is
routine: the equationm2 D 2n2 implies thatm2 is even, hencem is even, saym D 2k
for some k, hence .2k/2 D 2n2, hence 2k2 D n2, hence n2 is even, hence n is even,
finally a contradiction!

The knowledge of incommensurabilty, acquired by a surprise, by the “lighting
of a bulb” and generating a feeling of beauty, is clearly due to a Finitization of the
Infinite.

II. Tennenbaum’s proof of incommensurability. There is a still more beautiful proof
of the incommensurability of the diameter to the side of a square, in our opinion the
most beautiful there is (and we feel certain that Hardy would agree). In its modern
version it is due to (the unforgettable friend) Stanley Tennenbaum, who discovered
it at about 1950. It remained unpublished and became widely known much later by
John Conway [14, 15].

Let a, d be the side and the diameter of a square, so that d2 D 2a2, and suppose
that d , a are commensurable. Then there are numbersm, n and a line segment c, such
that a D mc, d D nc. As in I, we get to the equation n2 D 2m2. Now employing
nothing more than the Principle of the Least, a principle Finitizing the Infinite, we
may, and do, assume that m, n are the least numbers, such that n2 D 2m2. Now the
secret of this new proof is to form the great square with side n, and to place inside it
the two smaller squares with sidem below left and above right. Since n2 D 2m2, it is
clear that the intersection of the two smaller squares must be equal to the sum of the
two remaining squares located above left and below right.

It is easy to see that this equality takes the form

.2m� n/2 D 2.n�m/2;
and

0 < 2m � n < n; 0 < n �m < m;

a contradiction, since we have found numbers that express the equality d2 D 2a2 and
which are strictly smaller than the numbersm, n, respectively. The idea of this proof
is completely different from the idea we used in I. We have talked of the modern
version of this proof, because the proof just given is closely connected to, and results
from, Proposition II.9 of the Elements. (Details can be found in our book [52]).

III. Proposition IX.20 of the Elements. A second example of a beautiful mathe-
matical proof given by Hardy [37, pp. 18–19] is the following Proposition IX.20 of
the Elements: The multitude of the prime numbers is infinite. Let us see the proof.

Let us assume that this multitude is finite, say p1; p2; : : : ; pN . We set M D 1C
p1:p2 : : : ; pN . At this point we invoke the seemingly “innocent” Proposition VII.31
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of the Elements, according to which every natural number is divided by a prime num-
ber. But “innocence” is only apparent. Proposition VII.31 employs the Principle of
the Least, a Principle that Finitizes the Infinite. The proof is now completed as fol-
lows: Let p be a prime number that divides M , namely M D kp for some natural
number k. Clearly p is one of p1; p2; : : : ; pN , e.g., p D p7. Then

1 DM � p1:p2 : : : :pN D p7.k � p1:p2 : : : p6:p8 : : : pN /;
impossible! The final surprise and the “lightning of the bulb” is clearly due to the
Finitization of the Infinite. The Pythagorean proof, briefly outlined in Section 4.1, is
beautiful as well due the identical application of areas, a Pythagorean precursor of the
Logos Criterion for periodicity, and thus Finitization of the infinite anthyphairesis.

IV. Propositions I.35, 37, III.20 of the Elements. Propositions I.35, 37 (every par-
allelogram, resp. triangle, with fixed base in one of the two parallel lines, and moving
parallel side, resp. moving third vertex, in the other parallel line has constant finite
area and perimeter increasing to infinity) and Proposition III.20 (all angles formed by
a chord of a circle are constant) of the Elements are not described as “beautiful”, but
as “paradoxical” by the ancient scholiast Proclus (as we saw in Section 2.2), in the
sense that they are a mixture of the Infinite and the Finite, and thus resembling a Pla-
tonic Idea. Since these Propositions are consequences of the Fifth Postulate, Proclus’
comments in effect point at the fact that both the Fifth Postulate and Platonic Ideas
are Finitizations of the Infinite.

V. The Bolzano–Weierstrass Theorem. The Bolzano–Weierstrass theorem is cer-
tainly one of the most powerful and beautiful in real numbers. The theorem, stating
that every bounded sequence of real numbers has a convergent subsequence, can be
proved as follows: An index n is a peak point of the sequence (an) if am < an for
everym such thatm > n.

Claim 1. If the set of peak points of the sequence .an/ is infinite, then the subse-
quence of .an/ determined by this infinite set is decreasing.

Claim 2. If the set of peak points of the sequence .an/ is finite, then, with mathemat-
ical induction, we can define an increasing subsequence of .an/.

Claim 3. Every sequence of real numbers has a monotonic subsequence [Immediate
from Claims 1 & 2].

Claim 4. Every bounded monotonic sequence converges. [Indeed, if .bn/ is a bounded
increasing sequence, then the supremum of the set fbnW n D 1; 2; : : :g ex-
ists, by the Completeness property of real numbers, and is clearly the limit
of the sequence .bn/. Dually, if .bn/ is decreasing.]
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Thus the surprising indeed final result is a consequence of mathematical induction
(in Claim 2) and mainly of the Completeness property of the real numbers, both
Finitizations of the Infinite.

Claims 1 & 2 form a crypto-Ramsey type argument, and so their use and the use
of mathematical induction, may be replaced by an appeal to Ramsey’s theorem, itself
based on stronger Finitizations of the Infinite (as we have seen in Section 8).

VI. The definition of the exponential function.

Qui n’a été étonné en apprenant que la function: y D ex , telle un phenix
renaissant de ses cendres, est à elle-même sa propre derivée?6 (F. Le
Lionnais [44, p. 441])

The surprising and unexpected beauty of the exponential function is closely related
with the employment of the Completeness Axiom in its definition. Indeed the defini-
tion of the number e conforms to Plato’s description of the approach to the beautiful:

“ephexes”: .1C 1/1 < .1C 1=2/2 < .1C 1=3/3 < : : : < .1C 1=n/n < : : :, the
Infinite, and

“exaiphnes”: the limit, the exponential number e, by Finitizing the infinite;

a different Infinite from the one that Plato had in mind, and certainly a different
Finitization from the one that Plato had in mind, but equally beautiful, producing, as
in Plato’s case, a kind of paradoxical self-similarity, in the sense that the derivative of
the exponential function is itself.

VII. Pell’s Equation: Finitization of quadratic incommensurability. A notable con-
sequence of the Theaetetus palindromically periodic anthyphairesis of quadratic irra-
tionals is the complete solution of the Pell equation for every non-square number N ,
namely, the finding of the pairs p; q of natural numbers such that q2 D Np2 C 1.

The Hindu mathematicians Brahmagupta, Bhaskara II, and others had methods
of solving Pell’s equation. Van der Waerden [81], in 1976, believed that these Hindu
methods go back to Greek sources, but his arguments were inconclusive. In our forth-
coming work Negrepontis, Farmaki, Brokou [53], we present Theaetetus’ contribu-
tion (as deduced from Plato’s Politicus and the Theaetetean Book X of the Elements),
compare it with Hindu sources, and conclude that Theaetetus had made substantial
progress on, and even achieved a full proof of, Pell’s equation.

6Who has not been amazed to learn that the function y D ex , like a phoenix rising again from its own
ashes, is its own derivative?
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The existence, given a non-square number N , of a pair p; q of natural numbers
such that q2 D Np2 C 1 makes

p
N almost rational, by C1, and is thus a highly

a paradoxical situation. How can we find these solutions?
Every time the convergents qn; pn of the infinite anthyphairesis/continued frac-

tion of
p
N completes a period, and thus every time that the infinite anthyphairesis

is finitized by periodicity, we have a solution and the paradoxical validity of Pell’s
equation.

In conclusion, the feeling, that qualifies as Beauty in Mathematics, of suddenly
and unexpectedly reaching deep understanding of a problem, of a theorem and its
proof sits well with the paradoxical, near-contradictory deductive power of Mathe-
matics: we obtain this sudden deep understanding exactly when, and only when, we
connect the givens of the problem with the paradoxical, near contradictory axiom
or basic hypothesis. Thus mathematical beauty is inextricably linked to the near-
contradictory nature of Mathematics.

11.5 The Platonic, hence ultimately mathematical, principles infinite and finite,
are described by Proclus as the Dionysiac and the Apollonian, respectively. Most
surprisingly, Nietzsche sets the Dionysiac and the Apollonian as the supreme
principles of poetry and art. The Platonic Scholiast Proclus, in the In Timaeus,
surprisingly describes the opposition Dionysiac and Apollonian as one manifestation
of the Platonic principles of Infinite and Finite:

he [the Demiurgus] divides the soul into parts (diairei kata moiras), har-
monizes the divided parts (ta dieiremena), and renders them concordant
with each other (sumphona allelois). But in effecting these things, he
acts at one and the same time Dionysiacally and Apolloniacally (hama
men Dionysiakos, hama men Appoloniakos). For to divide and produce
wholes into parts, and to preside over the distribution (dianomes) of
kinds, is Dionysiacal; but to perfect all things harmonically, is Apollo-
niacal. As the Demiurgus, therefore, comprehends in himself the cause
of both these gods, he both divides and harmonizes the soul (Proclus, In
Timaeus 2, 197,13–23).

The soul may have a signature (sunthema) of the Dionysiacal series
(seiras), and of the fabulous lacerations (mutheuomenou sparagmou) of
Bacchus. For it is necessary that it should participate of the Dionysiacal
intellect; and as Orpheus say, that bearing of god on its head, it should
be divided conformably to him.

But it possesses harmony in these parts, as a symbol (sumbolon) of
the Apollonian order (taxeos). For in the lacerations of Bacchus, it is
Apollo who collects (sunagon) and unites (henizon) the divided (meris-
thenta) parts of Bacchus (Proclus, In Timaeus 2,198,7–14). [translation
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by Thomas Taylor, [63, vol. II, pp. 77–78], with minor modifications by
the authors].

On the other hand, Nietzsche, in The Birth of Tragedy [57] described these same
two principles, the Dionysiac and the Apollonian, as the principles whose mixture
produced Greek Tragedy and in fact all Greek civilization.

Nietzsche was not a friend of Plato (perhaps because of a basic misunderstanding
on his part), and neither had much if any relation to Mathematics, and Plato was not
a friend of Tragedy or even of Homer; so it is remarkable that these exact principles
that Proclus describes as the Platonic Infinite and Finite, and that we interpreted as
eventually mathematical, Nietzsche considers supreme principles for Art and Poetry.

Thus, Beauty in the Arts and in Poetry is being described by Nietzsche in terms
of principles ultimately closely related to the mathematical principles of Infinite and
Finite. (We have no idea if Nietzsche knew of Proclus’ comments when he evoked
these principles.)

Note. Our approach to Mathematical Beauty in terms of Finitization of the Infinite
has a surprising connection, not only with Nietzsche’s philosophy, but, as we now
realize, with the wider approach to Beauty in the Arts by means of the Sublime and
its association with Infinity, in the philosophical works, among others, of Shaftes-
bury, Burke, and Kant (cf. T. M. Costelloe (editor) [16, Chapter 4 by T. M. Costelloe,
Chapter 2 by R. Gasche, Chapter 3 by M. McBay Merritt, and Chapter 7 by P. Guyer].
There seems to be a fascinating similarity of the attractive aspect of the initially men-
acing Sublime/Infinite, with our Finitized Infinity, both achieved with surprise and
astonishment. Further study is needed to examine the nature of this similarity.

11.6 M. Atiyah and S. Zeki experimental discovery: Beauty in the arts is closely
related with beauty in mathematics. As we saw, Plato in the Sumposion described
Ideal Beauty in terms of a very special mathematical in nature finitization of the
infinite, namely periodic anthyphairesis.

Nietzsche invokes as principles of the Arts the Dionysiac and the Apollonian,
which, even if not identically interpreted, are certainly related to the Platonic Infi-
nite and Finite, and, mathematicians describe mathematical Beauty in terms that are
closely related to a finitization of infinity, one of the several modern mathematical
ones, some of which we saw in earlier sections. These are thus strong indications of
relations between mathematical Beauty and Beauty of the Arts in general.

Michael Atiyah co-operated with neuro-biologists in an experimental investiga-
tion of the relation of areas of the human brain activated by Beauty in the Arts and
correspondingly with Beauty in Mathematics, and came up, in their paper [90], with
the unexpected and remarkable conclusion that these two areas of the brain coincide:
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Results showed that the experience of mathematical beauty correlates
parametrically with activity in the same part of the emotional brain,
namely field A1 of the medial orbito-frontal cortex (mOFC), as the ex-
perience of beauty derived from other sources.

This is how Atiyah described this discovery to S. Roberts [67]:

Question: Not too long ago you published a study, with Semir Zeki,
a neurobiologist at University College London, and other collaborators,
on The Experience of Mathematical Beauty and Its Neural Correlates.
Atiyah: That’s the most-read article I’ve ever written! It’s been known
for a long time that some part of the brain lights up when you listen to
nice music, or read nice poetry, or look at nice pictures – and all of those
reactions happen in the same place [the “emotional brain,” specifically
the medial orbitofrontal cortex]. And the question was: Is the appre-
ciation of mathematical beauty the same, or is it different? And the
conclusion was, it is the same. The same bit of the brain that appreciates
beauty in music, art and poetry is also involved in the appreciation of
mathematical beauty. And that was a big discovery.

A successful explanation of Beauty in Mathematics might open the way for an ex-
planation of the beautiful in the Arts. Indeed, this correlation, or even identification,
suggests that the process of attaining knowledge and producing Beauty in Mathe-
matics by approximating the contradictory and finitizing the infinite is not unique in
Mathematics, but is relevant, has analogous counterparts and must have consequences
for the understanding of the nature of Beauty in general in the Arts and in Poetry, and
other areas of human creativity.

12 A preliminary note on “the Unreasonable Effectiveness
of Mathematics in the Natural Sciences”

The famous paper by Eugene Wigner [86] with the provocative title The Unreason-
able Effectiveness of Mathematics in the Natural Sciences, in 1960, and his conclu-
sion that this effectiveness is a “complete mystery”, has been a strong impetus for
our present investigation, although an indirect one (as we deal here only with pure
mathematics itself). Our treatment of the Unreasonable Effectiveness will be pre-
liminary and sketchy. Wigner’s question has been studied among others, by R. W.
Hamming [36]; M. Steiner, [76]; M. Colyvan [11]; J. Y. Halpern, R. Harper, N. Im-
merman, P. G. Kolaitis, M. Vardi, and V. Vianu [35], S. Bangu [2].
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If the nature of Mathematics is indeed paradoxical, in the sense we have described,
then we expect that this nature will account for its “unreasonable effectiveness”, as
well. In this preliminary and sketchy section on the “unreasonable effectiveness” of
Mathematics in applications to Physics and elsewhere, we confine ourselves to argue
that the hypothesis in Noether’s theorem, a theorem fundamental for modern Theo-
retical Physics, namely the symmetry assumption, is analogous to the Fifth Postulate,
and thus a powerful Finitization of the Infinite. It is our hope that other mathemati-
cians or physicists more versed than we are in Mathematical Physics will greatly
complete the picture.

As we saw in Section 2, Propositions I.35, I.37 of the Elements were considered
paradoxical in antiquity; we were able to explain this paradoxical sense by the fact
that they are consequences of the Fifth Postulate.

Newton derived Kepler’s second law (equal areas in equal time) employing Propo-
sition I.37 and a limiting infinitesimal argument (Newton, De Motu [55, Theorem 1];
cf. Brackenridge [4, pp. 78–85]; Newton, Principia [56, Proposition 1]; Erlich-
son [18]). As M. Nauenberg [46] 2003 writes, this Proposition is “justifiably regarded
as the cornerstone” of Newton’s Principia:

In Prop. 1 of the Principia Newton gave a proof that Kepler’s empiri-
cal area law for planetary orbits and the confinement of these orbits to
a plane are consequences of his laws of motion for the special case of
central forces. In his words,

The areas which bodies made to move in orbits described by radii
drawn to an unmoving center of force lie in unmoving planes and are
proportional to the times.

This proposition is justifiably regarded as a cornerstone of the Prin-
cipia, because the proportionality between the area swept out by the
radius vector of the orbit and the elapsed time enabled Newton to solve
dynamical problems by purely geometrical methods supplemented by
continuum limit arguments which he had developed.

The fact that Newton’s Second Law implies Kepler’s Second Law, which is equiva-
lent to the conservation of angular momentum, suggests that Newton’s Second Law
contains some physical principle Finitizing Infinity.

Returning to Proposition I.35 we note that we can derive it in a different way,
as follows: instead of using the Fifth Postulate itself, we replace it by its symmetry
equivalent,

every length, every angle, hence every orthogonal parallelogram is in-
variant under Euclidean translation.
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Then, one can prove I.35, namely that the area of the orthogonal parallelogram with
base the interval Œ.a; 0/; .b; 0/�, height h, and opposite side the interval Œ.a; h/; .b; h/�
is equal to the parallelogram with base the interval Œ.a; 0/; .b; 0/� and opposite side
the interval

Œ.aC t; h/; .b C t; h/�
by Calculus: consider for every partition

P D f0 D h0; h1; : : : ; hn D hg
of the interval h, the sum of the horizontal slices, take the limit as the norm of the
partitions P goes to zero, so that the integral from 0 to h is equal to the area of
the second parallelogram which, employing the Euclidean invariance with respect to
translation, is equal to h:.b � a/, the area of the orthogonal parallelogram.

With the symmetry formulation of the Fifth Principle in deriving I.35 & 37 and
with the central importance of I.37 in the development of Newton’s Principia, we
now realize that Noether’s theorem [58], in 1918, (every differentiable symmetry of
the action of a physical system has a corresponding conservation law) is in some
sense analogous to Proposition I.35, and its hypothesis, a differentiable symmetry of
the action of a physical system, is a powerful far-ranging physical Finitization of the
Infinite analogous to the simple Fifth Postulate Finitization. Indeed a “symmetry”
condition intuitively states that the form of the “Law of Nature” conforming with the
symmetry is the same everywhere or always as is in any one instance, similarly with
the Fifth Postulate.

Considering the central position that Noether’s theorem has acquired in Theo-
retical Physics, and that in every theory in Physics, be it Classical, or Quantum, or
Relativity, or other, conservation laws are fundamental, we now might conjecture that
the Unreasonable Effectiveness of Mathematics in the Physical Sciences is due to its
paradoxical nature. The True value of the conditional False!True makes it possible
for a hypothesis that is approximating the contradictory and is thus approximating
Falsity to provide a satisfactory explanation for any experimental data. These consid-
erations fit well with Wigner’s original misgivings:

Heisenberg’s rules presupposed that the classical equations of motion
had solutions with certain periodicity properties; and the equations of
motion of the two electrons of the helium atom, or of the even greater
number of electrons of heavier atoms, simply do not have these proper-
ties, so that Heisenberg’s rules cannot be applied to these cases.

Nevertheless, the calculation of the lowest energy level of helium,
as carried out a few months ago by Kinoshita at Cornell and by Bazley
at the Bureau of Standards, agree with the experimental data within the
accuracy of the observations, which is one part in ten millions. Surely
in this case we “got something out” of the equations that we did not put
in [86, pp. 8–11].
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If then Mathematics is being used in Physics, not so much to discover eternal laws
of nature, but rather to devise better approximations of the contradictory that will
provide a better account of the more and more exact experimental data, as admittedly
it has the power to do, then the famous Galileo dictum, “[il grande libro della natura]
e scritto in lingua matematica” [26] might be modified into “The great book of nature
is being written in mathematical language.”
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provement of our work. We express our warm thanks to Demetrios Christodoulou for
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