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Figure 1: Example of a perfect maze. In terms of graph theory, the maze is a connected acyclic undirected graph with 41 vertices
where the first vertex is the starting point and the last vertex is the end point. The maze was reproduced with permission of Joe
Wos.
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We discuss the two main perspectives from which a mathematician might view a
maze: that of graph theory and that of problem-solving.

Mathematics is often compared to a landscape, or even an entire universe. Another analogy which some
people like to use is that mathematics is a maze: one can go in circles for years without realising it or take
hundreds of turns and unexpectedly find a new route into familiar territory. Let’s turn this around and instead
think about the mathematics of mazes. The first person to seriously investigate plane mazes from a mathematical
point of view was Euler. These investigations led him to make some of the first contributions to the subjects
now known as graph theory and topology. Mazes typically look very messy, so the first thing a mathematician
might want to do is tidy a maze up and abstract it out into a collection of nodes (or vertices) joined by paths
(or edges). This object is known as a graph in pure mathematics.

If a maze can be represented by a graph which has vertices and edges such that each pair of vertices is
joined by only one edge, then it is known as a perfect maze. If we further require that none of the edges have
directions associated to them, then the graph is known as a tree. A common example of such a graph is a family
tree. A labyrinth is trivially a perfect maze as it can be represented by one pair of vertices joined by a single
edge (having one path which can be followed from beginning to end). Figure 1 shows an example of a perfect
maze along with the result when we ignore all the artistic details and only draw the edges and vertices. We can
see that the maze is a tree because each pair of vertices is joined by one path only and none of the edges have
directions associated to them. Figure 2 shows an example of a non-perfect maze represented by a graph which
contains pairs of vertices joined by more than one edge.

A type of maze which is particularly appealing to graph theorists is known as the Hamilton maze [1]. The
goal of a Hamilton maze is to find the unique path which visits each vertex once apart from the start and end
points ie. a path which visits each vertex once and then ends up back at the beginning. Such a path is known
as a Hamiltonian cycle. A Hamiltonian path visits each vertex once without being required to end up back at



Figure 2: Example of a non-perfect maze. In graph theory terms, this maze is not a tree because it contains cycles. The maze was
reproduced with permission of Joe Wos

.

the start point. Hamilton originally considered the problem of finding a Hamiltonian cycle in the edge graph
of the dodecahedron (known as Hamilton’s puzzle, or the icosian game). The general Hamiltonian problem is
to find out whether a graph admits a Hamiltonian path or a Hamiltonian cycle. Depending on the type of
graph, it might be possible to use a computer algorithm to solve this problem in a reasonable amount of time.
For example, it can be shown that 4-connected planar graphs (graphs with more than 4 vertices which stay
connected when fewer than 4 vertices are removed) always admit Hamiltonian cycles, and that one can always
use a computer algorithm to find the cycle in linear time using linear computer storage space [2]. In Figure 3
(top), we show an example of a Hamilton maze (a maze which admits a cycle such that every vertex is visited
once). This is a Hamilton maze because if we start at vertex 2, there is a path which goes through each vertex
once and ends up back at vertex 2. In Figure 3 (bottom), we show a non-Hamilton maze. One can check that
for this graph it is impossible to start from and end up at the same vertex whilst visiting every other vertex
only once.

Chess players might see a parallel between the Hamilton maze and the knight’s tour problem, where a player
makes a sequence of moves with the knight such that every square on the chessboard is visited once. A closed
knight’s tour is a path which ends up at the beginning square and an open knight’s tour is a path which ends at
a different square. These are clearly special cases of a Hamiltonian cycle and a Hamiltonian path, respectively,
where the graph of all the possible moves of the knight on a chessboard is called a knight’s graph. In Figure 4,
we show the knight’s graph associated with a 4×4 chessboard. This graph does not admit a Hamiltonian cycle,
so one cannot visit every square once with the knight and end up back at the beginning. It is an interesting fact
that a knight’s tour does not exist on a smaller 4×4 chessboard, but it does exist for a regular 8×8 chessboard
[3].

Euler was originally considering a similar scenario when he solved the problem of the Seven Bridges of
Königsberg in the negative. The problem in this case was whether someone could take a walk through the city
and walk across all seven bridges without ever crossing the same bridge twice. Euler was able to show that
this was impossible by converting the seven bridges into a graph (the bridges are edges and the landmasses
are vertices) and noting that in order to move across each edge only once, the number of edges adjacent to
each vertex must be an even number. However, all four of the vertices in the problem have an odd number of
adjacent edges, and since only two vertices can be the start point and the end point, it follows that there is no
solution. The corresponding graph is shown in Figure 5.

In stripping the problem down to a graph (much as we have down for mazes) and discarding irrelevant
geometric properties such as the lengths or curvatures of the bridges, Euler effectively made the first gestures
towards the subject which we now call topology. One must bear in mind that this idea of taking a maze or a
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Figure 3: Example of a Hamilton maze and a non-Hamilton maze.

Figure 4: Example of a knight’s graph which does not admit a knight’s tour.
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Figure 5: Graph corresponding to the Seven Bridges of Königsberg.

sequence of bridges and boiling it down to its essential information was revolutionary at the time, as the subject
of topology as we know it did not exist.

Besides the topological/graph theory interpretation, the main other perspective on mazes sees them as
puzzles or ’problems’ to be solved. How challenging can a standard maze actually be as a problem? In Figure 6
(top), a maze is shown which was drawn by Lewis Carroll for the purpose of being a difficult puzzle (Carroll is
of course better known as the author of Alice’s Adventures in Wonderland). In terms of our earlier terminology,
both mazes in Figure 6 are non-perfect because they both contain repeated vertices where a path loops from a
vertex back to the same vertex. In particular, there are pairs of vertices in Papa’s Maze which are joined by
multiple paths. Although Carroll’s maze looks complex, it is actually quite easy and can be solved in a matter
of minutes. Probably the most complicated example of a maze ever drawn without computer assistance emerged
in 2014 (known as Papa’s Maze, or the Impossible Maze), shown in Figure 6 (bottom). This was solved by the
author and M. Justice independently in 2014. A second, much simpler maze of the same size appeared in 2015
(known as Papa’s Maze 2). This was solved by the author in 2015. Finally, a third maze equal in complexity
to the first one appeared in 2020 (known as Papa’s Maze 3). This was also solved by the author in 2020 [4].

Papa’s Maze is quite difficult to solve both because of the high number of dead ends and the number of
possible path choices (other mazes typically create difficulty using only one of these). There are countless ways of
making mazes more challenging as puzzles (some of them probably inspired by video games like Tomb Raider):
doors which need keys, paths and walls which change, one-way paths or any other method one can think of to
restrict the movement of the player. We mentioned that Papa’s Maze was created without computer assistance,
so one might wonder whether it is possible to computer generate difficult mazes using algorithms based on graph
theory. That turns out to be the case, and there are many of these with their own advantages and disadvantages.

The usual basic approach is to start with a connected graph and then make a subgraph which connects
two points in the most confusing way possible, interspersing random edges to get plenty of loops. Probably
the most interesting way to computer generate a maze is to use a cellular automaton where each generation of
cells survives if it has a certain number of neighbouring cells (similar to Conway’s Game of Life), eventually
building a maze structure. Most (or all) of these algorithms so far result in mazes which are quite predictable
and uniform compared to a maze which a human can create. The final question is whether computer algorithms
can be written which solve mazes, and the answer is yes, with limitations specific to each algorithm. This is
clearly possible on some trivial level, since one could write an algorithm which simply tells the computer to
continually walk across edges crossing off dead ends until the end point is reached.

Needless to say, this is an incredibly slow process and far from optimal as the best way of finding a path
from the start point to the end point. Another common way to solve mazes is to use the left-hand rule, where
one always keeps the boundary of the maze on the left-hand side, and keeps travelling along that edge until
the end point is reached. This works on a topological level because most mazes are simply connected and have
boundaries which can be morphed continuously into a circle (any polygon is homeomorphic to a circle, to use
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Figure 6: Examples of complicated mazes. The top figure shows Lewis Carroll’s maze, and the bottom figure shows a section of
Papa’s Maze (reproduced with permission of Spoon & Tamago).
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topology jargon). Following the left-hand wall is topologically the same as walking around a circle from the
start point to the end point if we forget the irrelevant geometric details. It is doubtful that Papa’s Maze is
simply connected, so this would likely not work. In fact, one starts inside the maze in that case, and all it takes
for the algorithm to fail is that the start point not be connected to a section of the maze which is connected to
the outermost boundary.

A more effective algorithm due to Trémaux uses as its basic principle the idea that one should cross off
dead ends, but also mark the floor in such a way that paths which close up loops on a node are treated by the
computer as dead ends. If ones does this, all the loops will be cut away, and the maze will eventually become
simply connected again such that it can be solved with the left-hand rule. This was similar to the technique
which the author used to solve Papa’s Maze in a reasonable amount of time, whereas Justice seems to have used
a technique which is basically what a computer would do when carrying out the brute force algorithm which
we mentioned.
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