Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.11] DEFINITE INTEGRALS – AREAS

Compiled by Christos Nikolaidis

DEFINITE INTEGRALS - PROPERTIES

O. Practice questions

1. [Maximum mark: 36] *[without GDC]*Calculate the following definite integrals

$$\int_0^1 (2x+3) \mathrm{d}x$$

$$\int_{1}^{2} (2x+3) \mathrm{d}x$$

$$\int_0^2 (2x+3) \mathrm{d}x$$

$$\int_{-2}^{2} (2x+3) dx$$

$$\int_0^1 (e^x + 2) dx$$

$$\int_0^\pi (\sin x + \cos x) \mathrm{d}x$$

$$\int_{1}^{e} \frac{7}{x} dx$$

$$\int_0^1 e^{2x+3} dx$$

$$\int_0^4 \frac{1}{x+1} \, \mathrm{d}x$$

$$\int_0^{10} x \mathrm{d}x$$

$$\int_0^{10} 5 \, \mathrm{d}x$$

$$\int_{4}^{10} \mathrm{d}x$$

[3]

2.		kimum mark: 6]	[without GDC]	
		$f(x) = x \ln x - x$		
		Find $f'(x)$	1	
	(b)	Hence find $\int_1^3 \ln$	xdx	
3.		kimum mark: 18]		
	Let	$\int_5^7 f(x) \mathrm{d}x = 8 \text{ and }$	$\int_5^7 g(x) \mathrm{d} x = 2$	
	Calc	culate the following	gexpressions	
		$\int_5^7 3f(x) \mathrm{d}x$		
		$\int_{7}^{5} f(x) \mathrm{d}x$		
		$\int_5^7 (f(x)+1) \mathrm{d}x$		
		$\int_5^7 (f(x) + x) \mathrm{d}x$		
		$\int_5^7 [f(x) - 4g(x)]$]dx	
		$\int_5^8 f(x) \mathrm{d}x - \int_7^8 f(x) \mathrm{d}x$	f(x)dx	
		$3\int_{5}^{6} f(x) dx + \int_{6}^{7}$	$\int_{0}^{x} 3f(x)dx$	
		$\int_8^{10} f(x-3) \mathrm{d}x$		
		$\int_{2.5}^{3.5} f(2x) \mathrm{d}x$		

4.	[Maximum mark: 9]	[without GDC]
----	-------------------	---------------

(a) Find
$$\int \frac{1}{2x+3} dx$$
. [2]

(b) Given that
$$\int_0^3 \frac{1}{2x+3} dx = \ln \sqrt{P}$$
, find the value of P . [3]

(c)	Given that $\int_0^m \frac{1}{2x+3} dx = 1$, calculate the value of m .	[4]
	$J0.2v\pm 2$	

A. Exam style questions (SHORT)

5. [Maximum mark: 5] [without GDC]

Given $\int_3^k \frac{1}{x-2} dx = \ln 7$, find the value of k.

.....

.....

6. [Maximum mark: 4] **[without GDC]**

Find the real number k > 1 for which $\int_{1}^{k} \left(1 + \frac{1}{x^2}\right) dx = \frac{3}{2}$.

7. [Maximum mark: 3] [with GDC]

Find the value of a such that $\int_{0}^{a} \cos^{2} x \, dx = 0.740$. Give your answer to 3 decimal places.

Give	n that $\int_{1}^{3} g(x)dx = 10$, deduce the value of (i) $\int_{1}^{3} \frac{1}{2}g(x)dx$; (ii) $\int_{1}^{3} (g(x)+4)dx$.
[Max	cimum mark: 6] [without GDC]
Let	f be a function such that $\int_0^3 f(x) dx = 8$.
(a)	Deduce the value of (i) $\int_0^3 2f(x) dx$ (ii) $\int_0^3 (f(x)+2) dx$
(b)	$\int_{c}^{d} f(x-2) dx = 8$, write down the value of c and of d .
ГМах	timum mark: 6] [without GDC]
_	simum mark: 6] [without GDC] In that $\int_0^3 f(x) dx = 5$, deduce the value of (i) $\int_0^3 2 f(x) dx$ (ii) $\int_0^3 (3x^2 + f(x)) dx$.
_	timum mark: 6] [without GDC] In that $\int_1^3 f(x) dx = 5$, deduce the value of (i) $\int_1^3 2f(x) dx$ (ii) $\int_1^3 \left(3x^2 + f(x)\right) dx$.
_	
_	
_	

11.	[Maximum	mark: 6]	[without	GDC1
	IIVIANIIIIUIII	man. O	IVILLIOUL	

The table shows some values of two functions, f, g and of their derivatives f', g':

X	1	2	3	4
f(x)	5	4	-1	3
g(x)	1	-2	2	-5
f'(x)	5	6	0	7
g'(x)	-6	-4	-3	4

(a)	Calculate $\frac{d}{dx}(f(x)+g(x))$, when $x=4$;	[2]
-----	--	-----

(h)	Calculate	$\int_{0}^{3} (-1/(1) + 6) dx$	Lv.	1
(a)	Calculate	$\int_{1}^{3} (g'(x) + 6) dx.$	[4]	J

 	•••••	

12. [Maximum mark: 7] [without GDC]

Let
$$\int_{1}^{5} 3 f(x) dx = 12$$
.

(a) Show that
$$\int_5^1 f(x) dx = -4$$
 [3]

(b) Find the value of
$$\int_{1}^{2} (x + f(x)) dx + \int_{2}^{5} (x + f(x)) dx$$
 [4]

AREAS

O. Practice questions

13. [Maximum mark: 8] [with / without GDC]

The following diagram shows part of the graph of $y = \cos x$ for $0 \le x \le \frac{3\pi}{2}$.

- (a) Calculate (i) $\int_0^{\frac{\pi}{2}} \cos x dx$, (ii) $\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x dx$, (iii) $\int_0^{\frac{3\pi}{2}} \cos x dx$ [5]
- (b) Write down the area enclosed by the curve and x-axis
 - (i) between the vertical lines x = 0 and $x = \frac{\pi}{2}$
 - (ii) between the vertical lines $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$
 - (iii) between the vertical lines x = 0 and $x = \frac{3\pi}{2}$ [3]

.....

14. [Maximum mark: 8] [with / without GDC]

Consider the two curves $y = x^2$, $y = 8 - x^2$

- (a) Find the area A enclosed by the two curves and the x-axis in the first quadrant. [4]
- (b) Find the area B enclosed by the two curves and the y-axis in the first quadrant [4]

15. [Maximum mark: 21] [with GDC]

Complete the following table

Region enclosed by	Expression for the area	Area
$f(x) = \cos(x^2)$ $g(x) = e^x,$ for $-1.5 \le x \le 0.5$.	$\int_{-1.11}^{0} \left(\cos(x^2) - e^x\right) dx$	
$y = \sin x$ $y = x^2 - 2x + 1.5,$ for $0 \le x \le \pi$.		0.271
$y = \ln x$ $y = e^{x} - e,$ for $x > 0$.		
$y = \frac{2}{1+x^2}$ $y = e^{x/3},$ for $-3 \le x \le 3$.		
$f(x) = 4 - x^{2}$ $g(x) = (x+1)\cos x$		
$y = e^{-x} - x + 1$ and the coordinate axes		
$f: x \mapsto \frac{\sin x}{x},$ $x \text{-axis}$ for $\pi \le x \le 3\pi$		
$y = x^{3} - 3x^{2} - 9x + 27$ $y = x + 3$		

A. Exam style questions (SHORT)

16. [Maximum mark: 7] *[with GDC]*

The diagram shows part of the graph of the function $f(x) = 1 + 3\sin(x+2)$.

(a) Find
$$f'(x)$$
 [2]

(b) Find
$$\int f(x) dx$$
 [2]

The area of the shaded region is given by $\int_0^a f(x) dx$.

- (c) (i) Find the value of a.
 - (ii) Find the area of the shaded region.

[3]

17. [Maximum mark: 4] [without GDC]

The diagram shows part of the graph of $y = 12x^2(1-x)$.

(a) Write down an integral which represents the area of the shaded region.

[1]

(b)	Find the area of the shaded region.	[3]

18. [Maximum mark: 6] *[without GDC]*

The diagram shows part of the curve $y = \sin x$. The shaded region is bounded by the curve and the lines y = 0 and $x = \frac{3\pi}{4}$.

Given that $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$ and $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$, calculate the area of the shaded region.

19. [Maximum mark: 4] [without GDC]

The graph represents the function $f: x \mapsto p \cos x$, $p \in \mathbb{N}$.

(a) Write down the value of p;

[1]

(b) Find the area of the shaded region.

[3]

.....

20. [Maximum mark: 6] *[without GDC]*

Consider the function $f(x) = 2 + \frac{1}{x-1}$. The region enclosed by the graph of f(x), the x-axis and the lines x = 2 and x = 4, is labelled A, as shown in the diagram below.

Find (i) $\int f(x) dx$. (ii) the area of A.

[2]

[2]

[2]

21. [Maximum mark: 4] [with GDC]

For $x \ge \frac{1}{2}$, let $f(x) = x^2 \ln(x+1)$ and $g(x) = \sqrt{2x-1}$.

(a) Sketch the graphs of f and g on the grid below.

(b) Let A be the region completely enclosed by the graphs of f and g.

.....

22. [Maximum mark: 6] [with GDC]

Find the area of A.

The function f is defined as $f(x) = \sin x \ln x$ for $x \in [0.5, 3.5]$

(a) Write down the x-intercepts.

(b) The area above the x-axis is A and the **total** area below the x-axis is B.

If A = kB, find k. [4]

23.	[Maximum mark: 7]	[without GDC]
	Find the area betweer	in the curves $y = 2 + x - x^2$ and $y = 2 - 3x + x^2$
24.	[Maximum mark: 6]	[without GDC]
	Find the area enclose	d by the two curves $y = x^2$ and $y = 2a^2 - x^2$ where $a > 0$.

25. [Maximum mark: 5] [with GDC]

Part of the graph of $y = \sin 2x$ is shown below. The area of the shaded region is 0.85. Find k.

26. [Maximum mark: 4] *[without GDC]*

The diagram shows part of the graph of $y = \frac{1}{x}$. The area of the shaded region is 2 units.

Find the exact value of a.

27. [Maximum mark: 6] [with GDC]

Let $f(x) = e^x \sin 2x + 10$, for $0 \le x \le 4$. Part of the graph of f is given below.

There is an x-intercept at the point A, a local maximum point at M, where x = p and a local minimum point at N, where x = q.

- (a) Write down the x-coordinate of A. [1]
- (b) Find the value of (i) p; (ii) q. [2]
- (c) Find $\int_{p}^{q} f(x) dx$. Explain why this is not the area of the shaded region. [3]

	[MAA 5.11] DEFINITE INTEGRALS – AREAS		
28.	28. [Maximum mark: 6] <i>[with GDC]</i> Consider the function. $f(x) = \cos x + \sin x$. (a) Find in terms of π , the smallest positive value of x such that $f(x) = \cos x + \sin x$.		
	The diagram shows the graph of $y = e^x(\cos x + \sin x)$, $-2 \le x \le 3$.		

29. [Maximum mark: 5] [with GDC]

The function f is defined as $f(x) = e^x \sin x$, where x is in radians.

Let A be the x-intercept corresponding to the smallest **positive** zero of f.

Write down the x-coordinate of the point A. (a)

[1]

- Let R be the region enclosed by the curve and x-axis, between the origin and A. (b)
 - (i) Write down an expression for the area of *R*.
 - (ii) Find the area of *R*.

[4]

[3]

30.	[Max	ximum mark: 7] <i>[without GDC]</i>	
	Let	$f(x) = \frac{-3x}{x^2 - 1}$ and $g(x) = f'(x)$.	
	(a)	Show that $g(x) = \frac{3(x^2+1)}{(x^2-1)^2}$.	[3]
	(b)	Let A be the area of the region enclosed by the graph of g and the x -axis, between $x=0$ and $x=a$, where $a>0$. Given that $A=2$, find the value of a .	[4]

31*. [Maximum mark: 4] [without GDC]

In the diagram, PTQ is an arc of the parabola $y = a^2 - x^2$, where a is a positive constant, and PQRS is a rectangle. The area of the rectangle PQRS is equal to the area between the arc PTQ of the parabola and the x-axis.

Find, in terms of $\it a$, the dimensions of the rectangle.

32. [Maximum mark: 4] *[with GDC]*

The figure below shows part of the curve $y = x^3 - 7x^2 + 14x - 7$. The curve crosses the x-axis at the points A, B and C.

- (a) Find the x-coordinate (i) of A (ii) of B. [2]
- (b) Find the area of the shaded region. [2]

33. [Maximum mark: 7] *[with GDC]*

Let $f(x) = x \ln(4-x^2)$, for $-2 \le x \le 2$. The graph of f is shown below.

The graph of f crosses the x-axis at x = a, x = 0 and x = b.

(a) Find the value of a and of b.

[3]

The graph of f has a maximum value when x = c.

(b) Find the value of c.

[2]

[2]

(c) Let R be the region enclosed by the curve, the x-axis and the line x = c, between x = a and x = c. Find the area of R.

.....

.....

.....

B. Exam style questions (LONG)

- **34.** [Maximum mark: 10] *[without GDC]*
 - (a) Find the equation of the tangent line to the curve $y = \ln x$ at the point (e, 1), and verify that the origin is on this line. [4]
 - (b) Show that $\frac{d}{dx}(x \ln x x) = \ln x$ [2]
 - (c) The diagram shows the region enclosed by the curve $y = \ln x$, the tangent line in part (a), and the line y = 0.

Use the result of part (b) to show that the area of this region is $\frac{1}{2}e^{-1}$.	[4]

35. [Maximum mark: 16] *[without GDC]*

The following diagram shows part of the graph of the function $f(x) = 2x^2$.

The line T is the tangent to the graph of f at x = 1.

- (a) Show that the equation of *T* is y = 4x 2. [5]
- (b) Find the x-intercept of T. [2]

[9]

- (c) The shaded region R is enclosed by the graph of f, the line T, and the x-axis.
 - (i) Write down an expression for the area of *R*.

(ii)	Find the area of <i>R</i> .

36. [Maximum mark: 12] *[without GDC]*

Let $f(x) = \sqrt{x}$. Line *L* is the normal to the graph of *f* at the point (4, 2).

- (a) Show that the equation of *L* is y = -4x + 18.
- (b) Point A is the x-intercept of L. Find the x-coordinate of A. [2]

[4]

In the diagram below, the shaded region R is bounded by the x-axis, the graph of f and the line L.

(c) Find an expression for the area of *R*. [3]

(d) Find the area R [3]

37. [Maximum mark: 14] *[with GDC]*

The following diagram shows the graphs of $f(x) = \ln(3x-2)+1$ and

 $g(x) = -4\cos(0.5x) + 2$, for $1 \le x \le 10$.

- (a) Let A be the area of the region **enclosed** by the curves of f and g.
 - (i) Find an expression for A;

g . Find both these values of x .

(ii) Calculate the value of A.

[6] [4]

(b) Find (i) f'(x); (ii) g'(x).

(c) There are two values of x for which the gradient of f is equal to the gradient of

[4]

.....

 (b) Use your answers to part (a) to sketch a graph of the curve for 0 ≤ x ≤ 4, clearly indicating the features you have found in part (a). (c) (i) On your sketch indicate by shading the region whose area is given by the following integral: ∫₀⁴ x(x-4)² dx (ii) Explain, using your answer to part (a), why the value of this integral is 	38*.	[Max	imum	n mark: 14] <i>[without GDC]</i>			
 (i) the <i>x</i>-intercepts; (ii) the coordinates of the maximum point (by using derivatives); (iii) the <i>x</i>-coordinate of the point of inflexion. (b) Use your answers to part (a) to sketch a graph of the curve for 0 ≤ <i>x</i> ≤ 4, clearly indicating the features you have found in part (a). (c) (i) On your sketch indicate by shading the region whose area is given by the following integral: ∫₀⁴ x(x-4)² dx (ii) Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40. 		A curve has equation $y = x(x-4)^2$.					
 (ii) the coordinates of the maximum point (by using derivatives); (iii) the x-coordinate of the point of inflexion. (b) Use your answers to part (a) to sketch a graph of the curve for 0 ≤ x ≤ 4, clearly indicating the features you have found in part (a). (c) (i) On your sketch indicate by shading the region whose area is given by the following integral: ∫₀⁴ x(x - 4)² dx (ii) Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40. 		(a)	For t	this curve find			
 (iii) the <i>x</i>-coordinate of the point of inflexion. (b) Use your answers to part (a) to sketch a graph of the curve for 0 ≤ x ≤ 4, clearly indicating the features you have found in part (a). (c) (i) On your sketch indicate by shading the region whose area is given by the following integral: ∫₀⁴ x(x - 4)² dx (ii) Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40. 			(i)	the x-intercepts;			
 (b) Use your answers to part (a) to sketch a graph of the curve for 0 ≤ x ≤ 4, clearly indicating the features you have found in part (a). (c) (i) On your sketch indicate by shading the region whose area is given by the following integral: ∫₀⁴ x(x-4)² dx (ii) Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40. 			(ii)	the coordinates of the maximum point (by using derivatives);			
indicating the features you have found in part (a). (c) (i) On your sketch indicate by shading the region whose area is given by the following integral: $\int_0^t x(x-4)^2 dx$ (ii) Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40.			(iii)	the x -coordinate of the point of inflexion.	[8]		
(c) (i) On your sketch indicate by shading the region whose area is given by the following integral: $\int_0^4 x(x-4)^2 dx$ (ii) Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40.		(b)	Use	your answers to part (a) to sketch a graph of the curve for $0 \le x \le 4$, clearly			
following integral: $\int_0^4 x(x-4)^2 dx$ (ii) Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40.			indic	cating the features you have found in part (a).	[3]		
(ii) Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40. [:		(c)	(i)	On your sketch indicate by shading the region whose area is given by the			
greater than 0 but less than 40.				following integral: $\int_0^4 x(x-4)^2 dx$			
			(ii)	Explain, using your answer to part (a), why the value of this integral is			
				greater than 0 but less than 40.	[3]		
			•••••				

[MAA 5.11] DEFINITE INTEGRALS - AREAS

39.	[Max	rimum mark: 10] <i>[with GDC]</i>				
	(a)	Sketch the graph of $y = \pi \sin x - x$, $-3 \le x \le 3$. Label and number both axes and				
		indicate clearly the approximate positions of the $\it x$ -intercepts and the local				
		maximum and minimum points.	[5]			
	(b)	Find the solution of the equation $\pi \sin x - x = 0$, $x > 0$.	[1]			
	(c)	Find the indefinite integral $\int (\pi \sin x - x) dx$ and hence, or otherwise, calculate the				
		area of the region enclosed by the graph, the x -axis and the line $x=1$.	[4]			

40.	[Max	imum	mark: 14] [with GDC]		
	Note: Radians are used throughout this question.				
	(a)	(i)	Sketch the graph of $y = x^2 \cos x$, for $0 \le x \le 2$ making clear the approximate		
			positions of the positive intercept, the maximum point and the end-points.		
		(ii)	Write down the approximate coordinates of the positive x -intercept, the		
			maximum point and the end-points.	[7]	
	(b)	Find	the exact value of the positive x -intercept for $0 \le x \le 2$.	[2]	
	Let F	R be th	he region in the first quadrant enclosed by the graph and the x -axis.		
	(c)	(i)	Shade <i>R</i> on your diagram.		
		(ii)	Write down an integral which represents the area of R.	[3]	
	(d)	Eval	uate the integral in part (c)(ii),	[2]	

41.	1. [Maximum mark: 14] <i>[with GDC]</i>				
Note: Radians are used throughout this question.					
	(a)	Draw the graph of $y = \pi + x \cos x$, $0 \le x \le 5$. Make clear			
		(i) the integer values of x and y on each axis;			
		(ii) the approximate positions of the x -intercepts and the turning points.	[5]		
	(b)	Without the use of a calculator, show that π is a solution of the equation			
		$\pi + x \cos x = 0.$	[3]		
	(c)	Find another solution of the equation $\pi + x \cos x = 0$ for $0 \le x \le 5$, giving your			
		answer to six significant figures.	[2]		
	(d)	Let R be the region enclosed by the graph and the axes for $0 \le x \le \pi$. Shade R			
		on your diagram, and write down an integral which represents the area of $\it R$.	[2]		
	(e)	Evaluate the integral in part (d) to an accuracy of six significant figures.	[2]		

42. [Maximum mark: 15] [with GDC]

The diagram below shows part of the graph of the function $f:x \mapsto -x^3 + 2x^2 + 15x$.

The graph intercepts the x-axis at A(-3,0), B(5,0) and the origin, O. There is a minimum point at P and a maximum point at Q.

- (a) The function may also be written in the form $f: x \mapsto -x(x-a)(x-b)$, where a < b.

 Write down the value of (i) a; (ii) b.
- (b) (i) Find the **exact** values of x at which f'(x) = 0;
 - (ii) Find the value of the function at Q. [7]

[2]

- (c) (i) Find the equation of the tangent to the graph of f at O.
 - (ii) This tangent cuts the graph of f at point R. Give the x-coordinate of R. [4]
- (d) Determine the area of the shaded region. [2]

43. [Maximum mark: 18] [without GDC]

The following diagram shows part of the graph of $f(x) = (\sin x)^2 \cos x$ (x is in radians).

The point A is a maximum point and the point B lies on the x-axis.

- (a) (i) Find f'(x).
 - (ii) Hence show that at the point A, $\cos x = \sqrt{\frac{1}{3}}$.
 - (iii) Find the exact maximum value. [9]
- (b) Find the exact value of the x-coordinate at the point B. [1]
- (c) (i) Find $\int f(x) dx$.
 - (ii) Find the area of the shaded region in the diagram.
- (d) (i) Show that $f''(x) = 9(\cos x)^3 7\cos x$,
 - (ii) Hence show that at the point C, $\cos x = \frac{\sqrt{7}}{3}$. [4]

[4]

[MAA 5.11] DEFINITE INTEGRALS – AREAS

44.

[Max	Maximum mark: 13] [with GDC]				
Con	onsider functions of the form $y = e^{-kx}$.				
(a)	Show that $\int_0^1 e^{-kx} dx = \frac{1}{k} (1 - e^{-k})$.				
(b)	Let $k = 0.5$				
	(i)	Sketch the graph of $y = e^{-0.5x}$, for $-1 \le x \le 3$, indicating the y -intercept.			
	(ii)	Shade the region enclosed by this graph, the x -axis, y -axis and line $x=1$.			
	(iii)	Find the area of this region.	[5]		
(c)	(i)	Find $\frac{dy}{dx}$ in terms of k , where $y = e^{-kx}$.			
	(ii)	Find the value of k given that the point $P(1, 0.8)$ lies on the graph of $y = e^{-kx}$.			
	(iii)	Find the gradient of the tangent to the curve at P.	[5]		
	•••••				

45. [Maximum mark: 12] [with GDC]

Let
$$f(x) = -\frac{3}{4}x^2 + x + 4$$
.

- (a) (i) Find the equation of the normal to the curve of f at (2, 3).
 - (ii) This normal intersects the curve of f at (2, 3) and at one other point P. Find the x-coordinate of P.

[9]

Part of the graph of f is given below.

(b) Let R be the region under the curve of f from x = -1 to x = 2.

Write down an expression for the area of <i>R</i> and hence evaluate this area.	[3]

46. [Maximum mark: 15] *[with GDC]*

The diagram below shows a sketch of the graph of the function $y = \sin(e^x)$ where $-1 \le x \le 2$, and x is in **radians**. The graph cuts the y-axis at A, and the x-axis at C and D. It has a maximum point at B.

- (a) Find the coordinates of A. [2]
- (b) The coordinates of C may be written as $(\ln k, 0)$. Find the **exact** value of k. [2]
- (c) (i) Write down the y-coordinate of B.
 - (ii) Find $\frac{dy}{dx}$ and hence show that at B, $x = \ln \frac{\pi}{2}$. [6]
- (d) Write down the integral which represents the shaded area; evaluate the integral. [5]

•••••	 	• • • • • • • • • • • • • • • • • • • •

47.	. [Maximum mark: 14] [with GDC]							
	Cons	sider the function $f(x) = 1 + e^{-2x}$.						
	(a)	(i) (ii)	Find $f'(x)$. Explain briefly how this shows that $f(x)$ is a decreasing function.	[2]				
	Let F	be th	ne point on the graph of f where $x = -\frac{1}{2}$.					
	(b)	Find	an expression in terms of e for					
		(i)	the y -coordinate of P; (ii) the gradient of the tangent to the curve at P.	[2]				
	(c)	Find	the equation of the tangent to the curve at P, in the form $y = ax + b$.	[3]				
	(d)	(i)	Sketch the curve of f for $-1 \le x \le 2$.					
		(ii)	Draw the tangent at $x = -\frac{1}{2}$.					
		(iii)	Shade the area enclosed by the curve, the tangent and the y -axis.					
		(iv)	Find this area.	[7]				

48. [Maximum mark: 11] [with GDC]

Let $h(x) = (x-2)\sin(x-1)$ for $-5 \le x \le 5$. The curve of h(x) is shown below. There is a minimum point at R and a maximum point at S. The curve intersects the x-axis at the points (a, 0), (1, 0), (2, 0) and (b, 0).

(a) Find the exact values of a and b.

[2]

The regions between the curve and the *x*-axis are shaded for $a \le x \le 2$ as shown.

- (b) (i) Write down an expression which represents the **total** area shaded.
 - (ii) Calculate this total area.

[5]

[4]

- (c) (i) The y-coordinate of R is -0.240. Find the y-coordinate of S.
 - (ii) Hence or otherwise, find the range of values of k for which the equation $(x-2)\sin(x-1) = k$ has **four** distinct solutions.

.....

.....

49.	[Max	kimum mark: 16] <i>[with GDC]</i>	
	The 1	function f is defined by $f:x\mapsto -0.5x^2+2x+2.5$.	
	(a)	Write down (i) $f'(x)$; (ii) $f'(0)$	[2]
	(b)	Let ${\it N}$ be the normal to the curve at the point where the graph intercepts the ${\it y}$ -	
		axis. Show that the equation of <i>N</i> may be written as $y = -0.5x + 2.5$.	[3]
		Let $g: x \mapsto -0.5x + 2.5$	
	(c)	(i) Find the solutions of $f(x) = g(x)$.	
		(ii) Hence find the coordinates of the other point of intersection of the normal and the curve.	[6]
	(d)	Let <i>R</i> be the region enclosed between the curve and <i>N</i> .	[~]
	()	(i) Write down an expression for the area of <i>R</i> .	
		(ii) Hence write down the area of <i>R</i> .	[5]

50. [Maximum mark: 13] *[with GDC]*

Let $f(x) = e^x(1-x^2)$. Part of the graph of y = f(x), for $-6 \le x \le 2$, is shown below.

- (a) Write down an expression for the area enclosed by the curve and x-axis. [3]
- (b) Find the coordinates of the y-intercept P. [1]
- (c) Let L be the normal to the curve at P. Show that L has equation x + y = 1. [4]
- (d) Let R be the region enclosed by the curve y = f(x) and the line L.
 - (i) Find an expression for the area of R.

(1)	I find all expression for the area of A.	
(ii)	Calculate the area of <i>R</i> .	[5]

51.	[Max	imum mark: 19] <i>[with GDC]</i>	
	The f	function f is defined as $f(x) = (2x+1)e^{-x}$, $0 \le x \le 3$. The point P(0, 1) lies on the	
	graph	n of $f(x)$, and there is a maximum point at Q.	
	(a)	Sketch the graph of $y = f(x)$, labelling the points P and Q.	[3]
	(b)	(i) Show that $f'(x) = (1-2x)e^{-x}$.	
		(ii) Find the exact coordinates of Q.	[7]
	(c)	The equation $f(x) = k$, where $k \in \mathbb{R}$, has two solutions. Write down the range of	
		values of k .	[2]
	(d)	Let R be the point on the curve of f with x -coordinate 3. Find the area of the	
		region enclosed by the curve and the line (PR).	[7]

52.	[Max	kimum mark: 15] <i>[with GDC]</i>	
	Let	$f(x) = 5\cos\frac{\pi}{4}x$ and $g(x) = -0.5x^2 + 5x - 8$, for $0 \le x \le 9$.	
	(a) (b)	On the same diagram, sketch the graphs of f and g . Consider the graph of f . Write down	[3]
	(c)	 (i) the x-intercept between x = 0 and x = 3; (ii) the period; (iii) the amplitude. Consider the graph of g. Write down (i) the two x-intercepts; (ii) the equation of the axis of symmetry. 	[4]
	(d)	Let R be the region enclosed by the graphs of f and g . Find the area of R .	[6]

53. [Maximum mark: 11] [without GDC]

Let
$$h(x) = \frac{3x-5}{x-2}, x \neq 2$$
.

- (a) (i) **Sketch** the graph of h for $-3 \le x \le 7$ and $-2 \le y \le 8$, including asymptotes.
 - (ii) Write down the **equations** of the asymptotes.

[5]

- (b) The expression $\frac{3x-5}{x-2}$ may also be written as $3+\frac{1}{x-2}$. Use this to find
 - (i) $\int h(x) dx$.

(ii)	the exact value of	$\int_3^5 h(x) \mathrm{d}x.$		[5]
------	---------------------------	------------------------------	--	-----

	J ₃	
(c)	On your sketch, shade the region whose area is represented by $\int_3^5 h(x) dx$.	[1]

54. [Maximum mark: 10] *[with GDC]*

Let $f(x) = x(x-5)^2$, for $0 \le x \le 6$. The diagram 1 shows the graph of f.

Let R be the region enclosed by the x-axis and the curve of f.

- (a) Find the area of R. [3]
- (b) The diagram 2 shows a part of the graph of a quadratic function g(x) = x(a-x).

The graph of g crosses the x-axis when x = a. The area of the shaded region is equal to the area of R. Find the value of a.

[7]

55. [Maximum mark: 16] *[without GDC]*

Let $f(x) = \frac{ax}{x^2 + 1}$, $-8 \le x \le 8$, $a \in \mathbb{R}$. The graph of f is shown below.

- (a) Show that f(-x) = f(x). [2]
- (b) Given that $f''(x) = \frac{2ax(x^2 3)}{(x^2 + 1)^3}$, find the coordinates of all points of inflexion. [7]
- (c) It is given that $\int f(x)dx = \frac{a}{2}\ln(x^2+1) + C$.
 - (i) Find the area of the shaded region, giving your answer in the form $p \ln q$.

[7]

(ii)	Find the value of $\int_4^8 2 f(x-1) dx$.

56. [Maximum mark: 16] *[without GDC]*

Let $f(x) = x^3$.

The point $P\left(a,f(a)\right)$, where a>0, lies on the graph of f. The tangent at P crosses the x-axis at the point $Q\left(\frac{2}{3},0\right)$ and intersects the graph of f at the point R(-2,-8) as shown in the diagram below.

- (a) (i) Show that the gradient of [PQ] is $\frac{a^3}{a-\frac{2}{3}}$.
 - (ii) Find f'(x) and hence f'(a) in terms of a.
 - (iii) Hence show that a = 1.

The equation of the tangent at P is y = 3x - 2.

 $k^4 - 6k^2 + 8 = 0.$

Let T be the region enclosed by the graph of f, the tangent [PR] and the line x = k, between x = -2 and x = k where -2 < k < 1. This is shown in the diagram above.

(b) Given that the area of T is 2k+4, show that k satisfies the equation

[7]

[9]

[MAA 5.11] DEFINITE INTEGRALS - AREAS

57. [Maximum mark: 17] *[without GDC]*

Let $f(x) = 6 + 6\sin x$. Part of the graph of f is shown below.

The shaded region is enclosed by the curve of f, the x-axis, and the y-axis.

- (a) Solve for $0 \le x < 2\pi$. (i) $6 + 6\sin x = 6$; (ii) $6 + 6\sin x = 0$. [5]
- (b) Write down the exact value of the x-intercept of f, for $0 \le x < 2\pi$. [1]
- (c) The area of the shaded region is k. Find the value of k, in terms of π .

Let $g(x) = 6 + 6\sin\left(x - \frac{\pi}{2}\right)$. The graph of f is transformed to the graph of g.

- (d) Give a full geometric description of this transformation. [2]
- (e) Given that $\int_{p}^{p+\frac{3\pi}{2}} g(x) dx = k$ and $0 \le p < 2\pi$, write down the two values of p. [3]

.....

58. [Maximum mark: 16] *[with GDC]*

Let $f(x) = Ae^{kx} + 3$. Part of the graph of f is shown below. The y-intercept is at (0,13).

- (a) Show that A = 10. [2]
- (b) Given that f(15) = 3.49 (correct to 3 significant figures), find the value of k. [3]
- (c) (i) Using your value of k, find f'(x).
 - (ii) Hence, explain why f is a decreasing function.
 - (iii) Write down the equation of the horizontal asymptote of the graph f. [6]

Let $g(x) = -x^2 + 12x - 24$.

(d) Find the area enclosed by the graphs of f and g. [6]

59.	[Max	kimum mark: 14] <i>[with GDC]</i>	
	(a)	On the same axes sketch the graphs of the functions, $f(x)$ and $g(x)$, where	
		$f(x) = 4 - (1 - x)^2$, for $-2 \le x \le 4$,	
		$g(x) = \ln(x+3) - 2$, for $-3 < x \le 5$.	[2]
	(b)	(i) Write down the equation of any vertical asymptotes.	
		(ii) State the x -intercept and y -intercept of $g(x)$.	[3]
	(c)	Find the values of x for which $f(x) = g(x)$.	[2]
	(d)	Let A be the region where $f(x) \ge g(x)$ and $x \ge 0$.	
		(i) On your graph shade the region A .	
		(ii) Write down an integral that represents the area of A .	
	(0)	(iii) Evaluate this integral.	[4]
	(e)	In the region A find the maximum vertical distance between $f(x)$ and $g(x)$.	[3]

[MAA 5.11] DEFINITE INTEGRALS - AREAS

60.

[M	laximum mark: 12] <i>[with GDC]</i>	
(a)	Sketch and label the graphs of $f(x) = e^{-x^2}$ and $g(x) = e^{x^2} - 1$ for $0 \le x \le 1$, and	
	shade the region $\it A$ which is bounded by the graphs and the $\it y$ -axis.	[3]
(b)	Let the x -coordinate of the point of intersection of the curves $y = f(x)$ and	
	y = g(x) be p . Without finding the value of p , show that	
	$\frac{p}{2}$ < (area of region A) < p .	[4]
(c)	Find the value of p correct to four decimal places.	[2]
(d)	Express the area of region A as a definite integral and calculate its value.	[3]