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Abstract: The dynamic geometrical system (DGS) GeoGebra has been introduced and applied for 

investigations concerning new notable points (called in the following as L: locus points) in 2D and 3D. 

It is demonstrated how much visual treatment of problems can help in finding analytical solutions. 

Among examples, L points of plane triangles and tetrahedrons have been included. New result is that L 

points are inverses of each other with respect to the circumscribed circle (sphere in 3D). 
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1. Introduction 

Goal of this paper is to show the significant value of the program GeoGebra in teaching geometry, in 

visual understanding of problems, and emphasize the basic role of the elementary approach. 

GeoGebra is a geometric and algebraic tool basically intended for teaching at schools and universities. 

After an easy registration, the user can quickly start experimenting. Basic mode is when there is an 

algebraic and a drawing window. Geometrical elements can be shown in the geometrical window. It is 

suitable for two- and three dimensions as well. Numerical data of objects are found in the algebraic 

window. The program is easily usable, the clear and thorough approach can be enjoyed. This program 

can also be used for visualizing and solving rather complex research problems. 

In this paper, our method is the following. Applying GeoGebra, a strong conjecture is found and then it 

is proved analytically. This idea is quite essential, because physical applications can also appear. 

Formerly, mathematics was a deductive science, in contrary to physics that is a fully inductive science 

based on experiments. Formerly, in mathematics, there were no experiments. With appearance of DGS, 

experiments became possible in geometry as well. Thus, geometry is currently becoming partly an 

inductive science [4]. This idea is not new. In other branches of mathematics, experiments started to 

become possible with appearance of computer. 

2. Two-dimensional problems 

2.1. The new notable points (L points) in GeoGebra 

First, we reproduce in elementary way, statements of our paper [2]. The elementary solution leads to 

Apollonius circles. Intersections of three Apollonius circles should be drawn. 

The problem is as follows. Given a general triangle 𝐴𝐵𝐶. It is to find point 𝑋 satisfying the following 

equation: 

𝐴𝑋

𝐵𝐶
=

𝐵𝑋

𝐶𝐴
=

𝐶𝑋

𝐴𝐵
     (2.1.1) 

where 𝐴𝑋 denotes the segment between 𝐴 and 𝑋, and so on.  

In general, 
𝐴𝑋

𝐵𝑋
= 𝑐𝑜𝑛𝑠𝑡. determines the Apollonius curve belonging to the given 𝐴, 𝐵 and the constant. 

For example, it is well known that locus of points for the 𝐴𝐵𝐶 triangle satisfying 
𝐴𝑋

𝐵𝑋
=

𝐴𝐶

𝐵𝐶
, is an 

Apollonius circle. Easy to show that this Apollonius circle intersects the circumscribed circle k 

perpendicularly. It is also well known that for any two vertices of the triangle, and for the ratio of the 

opposite edges, there is an Apollonius circle, and these circles intersect each other in two common 

points. 
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Fig. 2.1.1. The well-known Apollonius circles. Corresponding elements are denoted with the same 

color 

In our case, however, locus of points 𝑋 should be found that belong to 
𝐴𝑋

𝐵𝑋
=

𝐵𝐶

𝐴𝐶
. These are Apollonius 

circles of triangles 𝐴′𝐵𝐶, 𝐴𝐵′𝐶 and 𝐴𝐵𝐶′, where 𝐴′, 𝐵′, 𝐶′’ are mirrors of 𝐴, 𝐵, 𝐶 with respect to 

perpendicular bisectors belonging to the opposite sides. 

 

Fig. 2.1.2. From left to right, number of L points: 2, 1 or 0. Notations: k – circumscribed circle, O – 

center of the circumscribed circle, G – centroid, X, Y – L points 

Drawing these circles, and exploiting the dynamic tools of GeoGebra, we can recognize when 𝐴, 𝐵, 𝐶 

are moved, that 

1. These circles also perpendicularly intersect the circumscribed circle of 𝐴𝐵𝐶, 

2. When they intersect each other, then these three circles have 2 common points, 

3. When two of them touch each other than the third one touch at the same point, 

4. When they have no common points, they have a common power line, 

5. Their power line is the Euler line of the triangle 

These statements are analyzed in the following. 

1. For example, 𝐶′ also fits to the circumscribed circle k, thus, the circle belonging to 
𝐴𝑋

𝐵𝑋
=

𝐵𝐶

𝐴𝐶
=

𝐴𝐶′

𝐵𝐶′
 also perpendicular to 𝑘. 

2. This fitting follows from the transitivity of the mentioned equation, thus if the L point fits to 

two circles, then it fits to the third one as well, 

3. If two circles touch each other, then, as they are perpendicular to k, the touching point fits to k. 

This occurs if and only if 𝐴𝐵𝐶 is a right triangle. In this case the L points coincide, and they are 

mirrors of the right-angle vertex to the center of the opposite edge, 

4. This statement is proved analytically in [1]. Proof with use of elementary geometrical tools is 

an open problem. 

 

2.2. Inversion 
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As we mentioned at the beginning, first we show with GeoGebra that the L points are inverses of each 

other with respect to the circumscribed circle. This is a strong conjecture shown in Fig. 2.2.1. We 

calculated it numerically with 15-digit accuracy that inversion holds. 

 

Fig. 2.2.1. Conjecture that the L points are inverses of each other with respect to the circumscribed 

circle. Reason of the conjecture is that OX*OY=R2 with 15-digit accuracy 

This statement is a consequence of points 1 and 2 above, with a theorem that if two circles 

intersect each other perpendicularly, then one of them is invariant with respect to the inversion 

concerning the other one, or in other words, if the circle 𝑠 is perpendicular to the circle 𝑘, then 

inverse of any point of s also fits to 𝑠. This relation, as perpendicularity between two circles or 

lines, is symmetric. 

“A mathematical relation should be proved many ways not because one is more convincing 

than the other, but because different proofs enlighten different aspects of the same relation.” In 

this sense, the other proofs follow below. 

Given a triangle 𝐴𝐵𝐶 and the notable point 𝑋. We define 𝑋 as follows: 

√𝜇1 =
𝑋𝐴

𝐵𝐶
=

𝑋𝐵

𝐶𝐴
=

𝑋𝐶

𝐴𝐵
     (2.2.1) 

Theorem 1: If 𝑌 is an inversion of 𝑋 with respect to the circumscribed circle, then 𝑌 is also a 

notable point. 

Theorem 2: If 𝑋 and 𝑌 are notable points in the sense of (1), then they are inverses of each 

other, with respect to the circumscribed circle. 

Proof of Theorem 1: Denote 𝑊 the intersection of 𝑋𝑌 and the circumscribed circle. 𝑊, 𝑋, 𝑌 

fit to the same line across the center of the circumscribed circle because 𝑌 is an inversion of 𝑋: 

𝑥 = 𝑧 + 𝜇1𝑣      (2.2.2) 

𝑦 = 𝑧 + 𝜇2𝑣      (2.2.3) 

𝑤 = 𝑧 + 𝜇3𝑣      (2.2.4) 

where 𝑍 is the center of the circumscribed circle and 𝑣 is a vector of arbitrary length that 

satisfies the requirement for the Euler line. 𝑌 is the inversion of 𝑋: 

𝑥𝑦 = 𝑅2     (2.2.5) 

where 𝑅 is the radius of the circumscribed circle: 

𝑅 = |𝑎 − 𝑧| = |𝑏 − 𝑧| = |𝑐 − 𝑧| = |𝑤 − 𝑧|   (2.2.6) 
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From (2.2.5): 

𝜇1𝜇2 = 𝜇3
2     (2.2.7) 

We should prove that 

√𝜇2 =
𝑌𝐴

𝐵𝐶
=

𝑌𝐵

𝐶𝐴
=

𝑌𝐶

𝐴𝐵
     (2.2.8) 

Method of proof is that we assume (2.2.8) and we show that it leads to a right statement. 

It is to prove: 

|𝑥−𝑎|

√𝜇1
=

|𝑦−𝑎|

√𝜇2
      (2.2.9) 

where from (2.2.2-3): 

𝜇1

𝜇2
=

|𝑥−𝑧|

|𝑦−𝑧|
      (2.2.10) 

(𝑥 − 𝑎)
2

−
𝜇1

𝜇2
(𝑦 − 𝑎)

2

= 0    (2.2.11) 

(𝑥 − 𝑎 + √
𝜇1

𝜇2
(𝑦 − 𝑎)) (𝑥 − 𝑎 − √

𝜇1

𝜇2
(𝑦 − 𝑎)) = 0   (2.2.12) 

It is suspected that 𝑥 − 𝑎 + √
𝜇1

𝜇2
(𝑦 − 𝑎)  ⊥  𝑥 − 𝑎 − √

𝜇1

𝜇2
(𝑦 − 𝑎). 

 
Fig. 2.2.2. Perpendicularity condition in GeoGebra. We are speaking about u1 and u2 

We can easily see that the triangle with edges |𝑥 − 𝑎 + √
𝜇1

𝜇2
(𝑦 − 𝑎)|, |𝑥 − 𝑎 − √

𝜇1

𝜇2
(𝑦 − 𝑎)|, 

|2√
𝜇1

𝜇2
(𝑦 − 𝑎)| is a right triangle. Because imagine the triangle with vertices (0,0), 

2√
𝜇1

𝜇2
(𝑦 − 𝑎) and 𝑥 − 𝑎 + √

𝜇1

𝜇2
(𝑦 − 𝑎), and easy to see that these vertices are on a Thales 

circle with origin √
𝜇1

𝜇2
(𝑦 − 𝑎) and radius |𝑥 − 𝑎|. The proof is similar when 𝑎 is replaced by 

𝑏 or 𝑐. Thus Theorem 1 is proved. 

Proof of Theorem 2: 
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Conditions: 𝑋 and 𝑌 satisfy (2.2.1) and (2.2.8). 

Then they fit to the Euler line, that are (2.2.2) and (2.2.3), with proper choice of the direction 

of 𝑣. 

Then the intersection of 𝑋𝑌 and the circumscribed circle, 𝑊, also fit to the Euler line of (2.2.4). 

We should prove that (2.2.5) holds: 

𝑥𝑦 = 𝑅2     (2.2.13) 

Now we substitute (2.2.2-3) into (2.2.13): 

𝜇1𝜇2(𝑣)2 = 𝑅2    (2.2.14) 

Now we choose 𝑣 so that 

|𝑣| = 𝑅     (2.2.15) 

Then (14) becomes 

𝜇1𝜇2 = 1     (2.2.16) 

Then we consider that 𝜇1 and 𝜇2 are the two solutions of an equation for 𝜇. 

We start from (2.2.2). Then we put the origin to the center of the circumscribed circle, then 

(2.2.2) becomes: 

𝑥 = 𝜇𝑣     (2.2.17) 

Substituting (17) into (1): 

(𝜇𝑣 − 𝑎)
2

= 𝜇(𝑏 − 𝑐)
2
     (2.2.18) 

𝜇2𝑅2 − 2𝜇𝑣𝑎 + |𝑎|
2

− 𝜇|𝑏 − 𝑐|
2

= 0    (2.2.19) 

𝜇2 − 𝜇
2𝑣𝑎

𝑅2 + 1 − 2𝜇 + 𝜇
2𝑏𝑐

𝑅2 = 0    (2.2.20) 

𝜇2 − 𝜇
2𝑣(𝑎+𝑏+𝑐)

3𝑅2 + 𝜇
2(𝑏𝑐+𝑎𝑐+𝑎𝑏)

3𝑅2 − 2𝜇 + 1 = 0   (2.2.21) 

(𝜇 − 𝜇1)(𝜇 − 𝜇2) = 𝜇2 − 𝜇(𝜇1 + 𝜇2) + 𝜇1𝜇2 = 0   (2.2.22) 

Comparison of (2.2.21) and (2.2.22) yields 

𝜇1𝜇2 = 1     (2.2.23) 

That is, we wanted to prove. 

3. Three-dimensional problems 

Here we mention those problems that are left open in [3]. 

3.1.  Case of two L points in tetrahedrons 

In 3d, the L points can be found by intersection of Apollonius spheres. In Fig. 3.1. we show the case 

with two solutions. Solutions are depicted here as intersections of main circles of the Apollonius spheres. 
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Fig. 3.1. Case of two solutions in 3d 

 

Fig. 3.2. One solution 

 

Fig. 3.3. Zero solution 

Based on some GeoGebra runs, the following conjecture can occur. If two L points exist, then one is the 

inversion of the other with respect to the circumscribed sphere. Reason of this conjecture is also an 

experiment in GeoGebra. 
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Definition 3.1: Given the tetrahedron ABCD where 𝑎, 𝑏, 𝑐, 𝑑 are the position vectors pointing to the 

vertices. The L point 𝑋 is defined as 

|𝑥−𝑎|
2

𝐴𝑏𝑐𝑑
2 =

|𝑥−𝑏|
2

𝐴𝑐𝑑𝑎
2 =

|𝑥−𝑐|
2

𝐴𝑑𝑎𝑏
2 =

|𝑥−𝑑|
2

𝐴𝑎𝑏𝑐
2     (3.1) 

where 𝐴𝑎𝑏𝑐 denotes the area of the face 𝐴𝐵𝐶, and 𝑥 is a position vector to the point X. 

Theorem 3.1: If 𝑋 exists and 𝑌 is the inversion of 𝑋 with respect to the circumscribed sphere, then 𝑌 is 

an L point. 

Proof: Along the lines of the two-dimensional case in Section 2.2. 

3.2. Case of one solution 

This occurs when the plane of the centers of the Apollonius spheres touches the circumscribed sphere. 

Graphically this case is shown in Fig. 3.2. Alternative sufficient conditions are found in [3]. 

3.3. Case of zero solution, condition of the existence of the solution 

This case is shown in Fig. 3.3. 

The critical point is when the plane of the centers of the Apollonius spheres touches the circumscribed 

sphere. In case of no intersection, there is no solution, in case of intersection, there are two solutions. 

One solution occurs when there is a touch. In the following, the three cases are visualized. Then it is to 

find what the condition is for the vertices of the tetrahedron. 

4. Conclusions 

Our intention was to show versatility of the program GeoGebra. It is a strong help in research as well, 

as we have shown it in examples. The authors hope sincerely that this contribution obtains a further help 

in making GeoGebra even more widespread. 

A possible continuation may be a further investigation on the condition of existence of the L point in 

terms of vertex coordinates. Essential applications are expected in microwave measurement techniques 

and properties of tetrahedron-like molecules. Also, there is a possibility in telecommunications: 

Tetrahedron-like nets of mobile phones. 
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