探究 1 牛顿法——用导数方法求方程的近似解 (P82)

探究人: 时间: 指导老师:

探究目的

1、了解牛顿法的操作过程;

2、会用牛顿法求方程的近似解。

探究器材

电脑或平板、手机等设备, Geogebra 软件, 实验手册

探究步骤

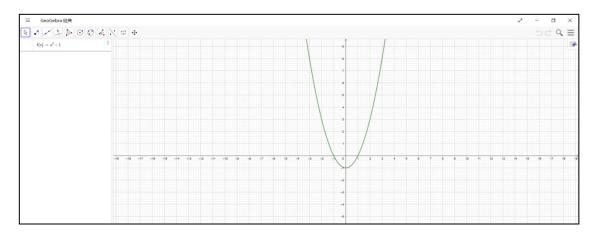
(参照教材中探究"选修二探究 1 牛顿法——用导数方法求方程的近似解(P82)"的方法,实施以下实验)

实验 1: 用导数方法求方程 x2-1=0 的近似解

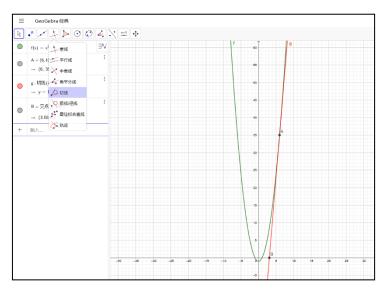
(我们知道,方程 x²-1=0 的解为±1,下面我们通过牛顿法,求方程的近似解(保留 5 位有效数字),并将试验数据填入下面表格)

Xi	点(x _i , y _i)		切线方程	切线与 x 轴的交点坐标		
X ₀ =6.00000	A (6, 35)		y=12x-37	B (3.08333, 0)		
X ₁ =X _B =3.08333	С (,)		D (,)		
	Е (,)		F (,)		
	G (,)		H (,)		
	Ι (,)		J (,)		
	К (,)		L (,)		
	М (,)		N (,)		

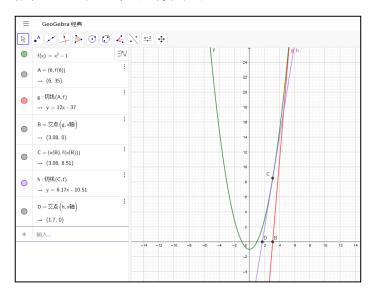
第一步:打开 Geogebra 数学画板,通过指令框输入函数 $f(x)=x^2-1$,得到函数 $f(x)=x^2-1$ 和右侧图像(如下图)



第二步:不妨选择初始值 x_0 =6,首先在指令输入框中输入 A=(6,f(6)),然后选择工具——"切线",再选择点 A 和函数 f(x)的图像,做出切线,最后通过工具——"交点"做出切线与 x 轴的交点 B(x_1 ,0);结果:生成点 A,切线和交点 B



第三步:首先通过输入框输入指令 "C=(x(B) , f (x (B))" , 然后选择工具—— "切线" , 再选择点 C 和函数 f(x)的图像,做出切线,最后通过工具—— "交点" 做出切线与 x 轴的交点 D $(x_2, 0)$; 结果:生成点 C,切线和交点 D



第四步:用上一步中得到的切线与 x 轴交点的横坐标,算出函数图像上的点,过点做切线,做切线与 x 轴的交点,再重复以上步骤,直到切线与 x 轴交点坐标不变为止,此时交点的横坐标即为满足精度的近似解。

实验结论:在不断重复步骤作出的切线与 x 轴的交点,在不断地靠近函数的零点(即方程的解),因此重复的次数越多,解的精度就高。从以上实验可知,对于 $x^2-1=0$,通过牛顿法迭代 5 次后,得到近似解为 x=1.00004。已非常接近真正的解。请同学们思考:每一次产生的切线零点 x_0 ,与前一次切线零点 x_0 ,有什么关系呢? 将思考结果填入探究结论里吧。

实验 2: 用导数方法求方程 $\frac{1}{15}x^3 - \frac{3}{5}x^2 + 2x - \frac{12}{5} = 0$ 的近似解(P82)

(我们知道,方程 $\frac{1}{15}x^3 - \frac{3}{5}x^2 + 2x - \frac{12}{5} = 0$ 的其中一解为 3,参照实验 1 的步骤,求方程的近似解(保留 5 位有效数字),并将试验数据填入下面表格)

Xi	点(x _i , y _i)			切线方程	切线与 x 轴的交点坐标		
X ₀ =6.00000	A (6,)			В (1)
$X_1=X_B=$	C (,)		D (,)
	Е (,)		F (,)
	G (,)		Н (,)
	1 (,)		J (3)
	К (,)		L (,)
	М (,)		N (,)

实验结论:重复 1 次步骤,得到近似解为____; 重复 2 次步骤,得到近似解为____; 重复 3 次步骤,得到近似解为____; 重复 4 次步骤,得到近似解为____。

探究结论

- 1、设起始点为 x_0 ,即切点为($x_0,f(x_0)$),则第 1 条切线方程为 $y-f(x_0)=$ _____,故其零点 $x_1=$ ___;
- 2、设第 n-1 条切线的零点为 x_{n-1},则第 n 条切线方程为 y-f(x_{n-1})=______,故其零点 x_n=____;
- 3、综上,由数学归纳法可知,第 n 次所求得的方程近似解为_____。

交流与反思

- 1、不同的初始值对近似解的影响是什么?
- 2、与二分法相比,牛顿法的优点与缺点是什么?

探究练习

- 1、取初始值 x₀=6, 用牛顿法求方程 x²-2x-3=0 的近似解。
- 2、取初始值 x₀=3. 用牛顿法求方程 lnx=2 的近似解。