$$
Duals: \frac{1}{1+x^2} \text{ and } \frac{1}{1-x^2}
$$

Students studying power series are sometimes surprised to discover that the interval of convergence of the power series of $\frac{1}{1-z}$ is (-1, 1). To many that appears strange since the function is clearly differentiable for all real *x*. When they study complex analysis they discover that the problem are the poles at $z = \pm i$. While not a proof per se, the phantom graph of $\frac{1}{1}$ is $y = \frac{1}{1}$, $x = 0$ and this more clearly is limited to $|z| < 1$. 1 $1 + x^2$ $\frac{1}{1+x^2}$ is $y = \frac{1}{1-z^2}$, $x = 0$ and this more clearly is limited to $|z| < 1$

It turns out that the phantom graph of $\frac{1}{1}$ is just $y = \frac{1}{1}$, $x = 0$. Hence, my calling them duals. $\frac{1}{1-x^2}$ is just $y = \frac{1}{1+z^2}$, $x = 0$

Derivation: If $f(x) = \frac{1}{1+x^2}$ then $1 + x^2$

$$
f(u+iv) = \frac{1}{\left(1 + (u+iv)^2\right)} = \frac{1}{\left(1 + u^2 - v^2\right) + i2uv} = \frac{1 + u^2 - v^2 - i2uv}{\left(1 + u^2 - v^2\right)^2 + 4u^2v^2}
$$

The imaginary part is zero if either *v*=0 or *u*=0. Ignoring the first, we find the real part when $u=0$ is $\frac{1}{2}$ $\frac{v}{\sqrt{2}} = \frac{1}{2}$. The phantom graph follows. $1 - v^2$ $(1-v^2)$ $\frac{1}{2} = \frac{1}{1 - v^2}$

A similar calculation works for the phantom graph of $f(x) = \frac{1}{1-x^2}$. $1 - x^2$