

Definition: A matrix is a rectangular array or arrangement of entries or elements displayed in rows and columns put within a square bracket [].

Order or Size of the matrix

• If a matrix *A* has *m* rows and *n* columns then the order or size of the matrix *A* is defined to be $m \times n$ (read as *m* by *n*).

Types of Matrices

1. ROW MATRIX

A matrix having only one row is called a row matrix.

• 1.
$$A = \left[a_{ij}\right]_{1 \times n}$$

• 2.
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}_{1 \times 4}$$

2. COLUMN MATRIX

A matrix having only one column is called a column matrix .

• 1.
$$A = \left[a_{ij}\right]_{m \times 1}$$

• 2. A =
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{3 \times 1}$$

3. ZERO MATRIX

A matrix $A = [a_{ij}]_{m \times n}$ is said to be a zero matrix or null matrix or void matrix denoted by 0 if $a_{ij} = 0$ for all values of $1 \le i \le m$ and $1 \le j \le n$.

• 1.
$$A = [0]_{1 \times 1}$$

• 2.
$$B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{2 \times 2}$$

4. SQUARE MATRIX

A matrix in which number of rows is equal to the number of columns, is called a square matrix.

• 1.
$$A = [a_{ij}]_{n \times n}$$

• 2.B =
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & f \end{bmatrix}_{3 \times 3}$$

5. DIAGONAL MATRIX

A square matrix
$$A = [a_{ij}]_{n \times n}$$
 is called a diagonal matrix if $a_{ij} = 0$ whenever $i \neq j$.

• 1.
$$A = \begin{bmatrix} r & 0 \\ 0 & s \end{bmatrix}_{2 \times 2}$$

• 2.
$$B = \begin{bmatrix} 2.5 & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & 0.5 \end{bmatrix}_{3 \times 3}$$

6. SCALAR MATRIX

A diagonal matrix whose entries along the principal diagonal are equal is called a scalar matrix.

• 1.
$$A = \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix}_{2 \times 2}$$

• 2.
$$B = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix}_{3 \times 3}$$

7.UNIT MATRIX

A square matrix in which all the diagonal entries are 1 and the rest are all zero is called a unit matrix

• 1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2 \times 2}$$

• 2. B=
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3}$$

8. UPPER TRIANGULAR MATRIX

A square matrix is said to be an upper triangular matrix if all the elements below the main diagonal are zero.

• 1.
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 6 \end{bmatrix}_{2 \times 2}$$

• 2.
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{bmatrix}_{3 \times 3}$$

9. LOWER TRIANGULAR MATRIX

A square matrix is said to be a lower triangular matrix if all the elements above the main diagonal are zero.

• 1.
$$A = \begin{bmatrix} 2 & 0 \\ 3 & 6 \end{bmatrix}_{2 \times 2}$$

• 2.
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ -5 & 8 & 9 \end{bmatrix}_{3 \times 3}$$

10. TRIANGULAR MATRIX

A square matrix which is either upper triangular or lower triangular is called a triangular matrix.

