V=8 Cube. Images: A critical points scheme for Generating uniformly distributed points on a sphere.
The applet illustrates the case where 4 vertices of a regular tetrahedron "induce" the vertices of two other polyhedra:
V=6 ●Octahedron← V=8 ●Cube →V=12 ●Cuboctahedron.
Generating polyhedra is in https://www.geogebra.org/m/rtm56gkb. Description are in https://www.geogebra.org/m/y8dnkeuu and https://www.geogebra.org/m/rkpxwceh.
![[size=85]A system of points on a sphere S of radius R “induces” on the sphere S0 of radius R0 three different sets of points, which are [color=#93c47d]geometric medians (GM)[/color] -local [color=#ff0000]maxima[/color], [color=#6d9eeb]minima[/color] and [color=#38761d]saddle[/color] points sum of distance function f(x). The angular coordinates of the spherical distribution of a system of points -[color=#0000ff] local minima[/color] coincide with the original system of points.[/size]](https://www.geogebra.org/resource/gyhgyssu/RfY3ZOQB4OtD4Tsj/material-gyhgyssu.png)

![Distribution of points Pi, [color=#5b0f00]test Point[/color], [color=#ff0000]Max[/color]/[color=#0000ff]min[/color]/[color=#38761d]saddle[/color] -[color=#333333]Critical points[/color] on a sphere. Vectors ∇f and ∇g at these points.](https://www.geogebra.org/resource/nvgvz2rh/tmXO20K4RFoGaOlz/material-nvgvz2rh.png)
![[color=#ff0000]max:[/color] Octahedron [color=#0000ff] min:[/color] Cube [color=#6aa84f]sad:[/color] Cuboctahedron](https://www.geogebra.org/resource/tgxk9nfk/riAGw5PEPqTqteUS/material-tgxk9nfk.png)


