Google Classroom
GeoGebraGeoGebra Classroom

FINDING THE AREA OF A TRAPEZOID

Instructions

Introduction and Background You can find the area of many polygons even if you can’t remember the appropriate formula. Deconstructing the polygons into smaller, simpler polygons with which you are more familiar can provide a tool for finding area. Once you know…
  1. that the area of a rectangle can be found by using the formula: area of a rectangle = base X height
  2. and that the area of a triangle (since it is half of a rectangle) can be found by using the formula:  area of a triangle = ½  X base X height you can deconstruct other,  more complex polygons, into rectangles and triangles and find their area in square units. 
Step 1.  Build a Trapezoid On the GeoGebra workspace, you see three simple polygons:  a red rectangle, a blue triangle, and a green triangle.   Use the MOVE tool Toolbar Image to use these three polygons to construct a new trapezoid. If you need to rotate a triangle, click on the  Show/Hide Rotator Points option.   Step 2.  Find the Areas of the Pieces  Turn on the GRID to use as a measuring tool.   Complete the following calculations:  Red Rectangle:  area= base X height                                                                     area= ________units  X  ________ units = ________  sq. units  Green Triangle:  area= ½ X base X height                                                                    area= ½ X  ________units  X ________ units = ________ sq. units  Blue Triangle: area= ½ X base X height                                                                area= ½ X  ________units  X ________ units = ________ sq. units   Area of Trapezoid=             ______ sq. units + ______sq. units + ______ sq. units = ______ sq. units  Step 3.  Check your Calculations  Click on the  Show/Hide Rotator Points option to hide the rotator points. Use the AREA tool Toolbar Image to label each of the three polygons with their areas.  Use this to check your work.