Szabályos háromszög - mértani hely (56.)
1. probléma
Az ABC háromszög síkjában mi a mértani helye azon P pontoknak, melyeknek a háromszög csúcsaitól vett távolságainak összege állandó.
Az izogonális pontról szerezhető ismeretek szerint a vizsgált távolságösszeg akkor minimális, ha P a szabályos háromszög középpontja. Ekkor a távolságösszeg a szabályos háromszög magasságának kétszerese. Egyébként a keresett mértani hely a GeoGebrával:
További lehetőség
Mi a mértani hely, tetszőleges háromszög esetén?
Ennek számolása meghaladja a GeoGebra erejét.
Egy jó ötlet lehetőséget biztosíthat a GeoGebra erejének jobb kihasználására. Ezt illusztrálja az alábbi, Dr. Szilassi Lajos tanár úr által készített GeoGebra fájl. Ebben az A, B és C pontok mozgathatók, és vizsgálható a mértani hely. A szellemes ötlet az, hogy a vizsgált mértani helyet egy kétváltozós függvény grafikonja (felület) és egy sík metszeteként állítja elő.
2. probléma
Az ABC háromszög síkjában mi a mértani helye azon P pontoknak, melyeknek a háromszög csúcsaitól vett távolságainak szrozata állandó.
A szorzat akkor minimális, ha P a háromszög valamelyik csúcsa, ekkor a szorzat 0. A mértani hely GeoGebrával:
Következzen ismét egy Szilassi-féle applet, amellyel a távolságszorzatnak megfelelő mértani hely nem csak szabályos háromszögben vizsgálható,