Nullstellen berechnen
Aufgabe 3
Eine Feuerwerksrakete wird in die Luft geschossen. Der Funktionsterm
beschreibt dabei die Höhe der parabelförmigen Flugbahn in m.
Der Wert x gibt dabei die Entfernung zu Abschusspunkt in m.
Arbeitsanweisung
1. Lies dir den folgenden Infotext zur Lösung von quadratischen Gleichungen durch.
2. Wie viele Meter nach dem Abschuss berührt die Rakete wieder den Boden?
1. Infotext: Lösen von quadratischen Gleichungen
Für die Nullstellen gilt:
f(x) = 0
Zur Berechnung der Nullstellen einer quadratischen Funktion wird die abc-Formel oder die pq-Formel verwendet. Die zu lösende Gleichung lautet:
pq-Formel:
Hinweis: Ist die Gleichung in der Form gegeben, muss die gesamte Gleichung durch a geteilt werden. Erst dann kann die p,q- Formel angewendet werden.
bzw.
Mitternachtsformel:
Beim Lösen von quadratischen Gleichungen kann es keine, eine oder zwei Lösungen geben. Welcher Fall entritt, hängt von dem Vorzeichen unter der Wurzel ab, d.h. vom Term unter der Wurzel (= Diskriminante).
2. Wie viele Meter nach dem Abschuss berührt die Rakete wieder den Boden? Beantworte die Frage rechnerisch. Runde auf 2 Nachkommastellen. Hilfestellung: Du kannst dir die Funktion im GeoGebra-Applet anzeigen lassen (Klicke auf den Punkt am linken Seitenrand).
Aufgabe 4
a)
Berechne die Nullstellen folgender Funktionen:
1) f(x) =
2) g(x) =
3) h(x)=
Kontrolle: Zur Kontrolle deiner Lösung, kannst du dir die einzelnen Funktionen im GeoGebra-Applet anzeigen lassen (Klicke auf die Punkte der Funktionen f(x), g(x) und h(x) am linken Rand).
b) Überlege dir die Antwort auf folgende Frage: Wovon hängt die Anzahl der Nullstellen ab? Ergänze folgende Regel. Regel: Die Diskriminante D ist der Term unter der Wurzel. Ist D = 0, besitzt die Funktion ............................... Nullstelle (Berührstelle). Ist D < 0, besitzt die Funktion ....................................... Nullstelle. Ist D > 0, besitzt die Funktion ....................................... Nullstellen.