LEMBAR KERJA PESERTA DIDIK 1 DIMENSI TIGA
Petunjuk Penggunaan
1. Isikan identitas dengan benar pada bagian yang telah tersedia.
2. Jika diperlukan, silahkan putar video pembahasan mengenai materi jarak titik ke titik.
3. Kerjakan aktivitas bersama kelompok masing-masing secara runtut dan seksama.
Tujuan Pembelajaran
1. Siswa mampu menentukan jarak antara titik terhadap titik dalam ruang dimensi tiga.
2. Siswa mampu menganalisis jarak antara titik terhadap titik dalam ruang dimensi tiga.
Identitas Kelompok
Pilih salah satu sesuai dengan pembagian kelompok
Select all that apply
- A
- B
- C
- D
- E
- F
Isikan identitas anggota kelompok (nama, nomor presensi)
Mari Mengingat
Teorema Phytagoras
Teorema ini biasa digunakan untuk mencari panjang salah satu sisi segitiga siku-siku ketika diketahui panjang kedua sisi lainnya.
Mari Memahami
Definisi Jarak Titik ke Titik
Jarak antar titik merupakan lintasan terpendek yang menghubungkan kedua titik tersebut.
Materi jarak titik ke titik
Ilustrasi
Gambar di atas merupakan gambaran jarak antar kota. Katakanlah kita ingin pergi dari Kota A ke Kota C, akan didapatkan beberapa pilihan jalur yang akan ditampilkan dalam tabel berikut:
Jalur nomor berapa yang akan kalian pilih untuk pergi dari Kota A ke Kota C?
Diskusikan bersama kelompokmu alasan memilih jalur tersebut
Mari Berlatih
Coba kerjakan aktivitas berikut dengan seksama
Diberikan kubus ABCD.EFGH dengan rusuk 10 cm. Cari dan tentukan jarak antara titik E dan titik G.
Dengan menggunakan menu yang ada, gambarkan ruas garis yang merupakan jarak antara titik E dan titik G.
Setelah menggambarkan jarak titik E dan titik G, bentuk suatu bidang untuk mempermudah mencari jarak antara kedua titik menggunakan teorema Phytagoras.
Setelah perhitungan di atas, berapa jarak titik E dan titik G yang kelompok kalian dapatkan?
Mari Mencoba Lebih Dalam
Masih dengan kubus yang sama, diskusikan bersama kelompok masing-masing.Bidang apa yang kalian ambil untuk mencari jarak titik A ke titik G?
Berapa panjang jarak titik A ke titik G?