Satz des Pythagoras
1. Satz des Pythagoras entdecken
.
2. Graphischer Beweis des Satzes des Pythagoras (einer von 200 existierenden Beweisen!)
Das linke Quadrat zeigt die Flächenaufteilung gemäß der ersten binomischen Formel: . Tatsächlich lässt sich seine Fläche in zwei Quadrate (mit den Flächen und ) sowie zwei gleich große Rechtecke mit jeweils der Fläche aufteilen.
Das rechte Quadrat nutzt eine andere Flächenaufteilung: Hier teil sich die Gesamtfläche in vier gleich große rechtwinklige Dreiecke (mit jeweils der Fläche ) und eine quadratische Restfläche, deren Seitenlänge
jeweils durch die Hypotenuse der Dreiecke gebildet wird. Die farbige Füllung verdeutlicht: Jeweils zwei der Dreiecke lassen sich zu einem der Rechtecke in der linken Figur zusammensetzen.
Unter den Quadraten ist gezeigt, dass sich durch Gleichsetzen der beiden Flächenaufteilungen des Satz des Pythagoras ergibt: Tatsächlich muss die weiße Fläche im rechten Quadrat genau so groß sein wie die Summe bei der beiden weißen Flächen und in der linken Figur. Damit ist bewiesen: