Sign in
Search
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
V=14 Tetrakis hexahedron Images: A critical points scheme for Generating uniformly distributed points on a sphere
Author:
Roman Chijner
Topic:
Algebra
,
Calculus
,
Circle
,
Difference and Slope
,
Differential Calculus
,
Differential Equation
,
Equations
,
Optimization Problems
,
Geometry
,
Function Graph
,
Intersection
,
Linear Programming or Linear Optimization
,
Mathematics
,
Sphere
,
Surface
,
Vectors
A system of points on a sphere S of radius R “induces” on the sphere S
0
of radius R
0
three different sets of points, which are
geometric medians (GM)
-local
maxima
,
minima
and
saddle
points sum of distance function f(x). The angular coordinates of the spherical distribution of a system of points -
local minima
coincide with the original system of points.
Distribution of points Pi
,
test Point
,
Max
/
min
/
saddle
-
Critical points
on a sphere. Vectors ∇f and ∇g at these points. max:
n=14
min:
n=12
sad:
n=24
Two-variable function f(φ,θ) over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.
Isolines and Intersection points of implicit functions over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.
Critial Points, Intersections
Critial Points
a,b,c Typen Rhombicuboctahedron
New Resources
အခြေခံ data အခေါ်အဝေါ်များ
z`]]
Happy new year 2025!
bewijs stelling van Pythagoras
Long Division Blank Templates: Max 5 Steps
Discover Resources
Octagon Loops
Reilly page 51 midline-invarient
Dynamic Worksheet Question 1
การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ
Урок 18
Discover Topics
Complex Numbers
Solids or 3D Shapes
Standard Deviation
Angles
Parabola