Demostración

Demostración

Determinar si n (3r-2)(6r+2) = 2n(3n^2+3n-2) n r=1 18r^2-6r-4 = 6n^3+6n^2-4n n Trabajaremos con: (3r-2)(6r+2) = 18r^2-6r-4 2n(3n^2+3n-2) =6n^3+6n^2-4n Trabajo previo. Para: P(1) 18(1)^2-6(1)-4 = 6(1)^3+6(1)^2-4(1) 8=8 es "V" P(2) [18(1)^2-6(1)-4] + [18(2)^2-6(2)-4] = 6(2)^3+6(2)^2-4(2) 8+56=64 64=64 es "V" P(3) [18(1)^2-6(1)-4] + [18(2)^2-6(2)-4] + [18(3)^2-6(3)-4] = 6(3)^3+6(3)^2-4(3) 8+56+140=204 204=204 es "V" Determinar para p(k) [18(1)^2-6(1)-4] + [18(2)^2-6(2)-4] + ... + [18(k)^2-6(k)-4] = 6(k)^3+6(k)^2-4(k) Entonces p(k+1) 6n^3+6n^2-4n 6(k+1)^3+6(k+1)^2-4(k+1) Efectuamos productos 6(k^3+3k^2+3k+1)+6(k^2+2k+1)-4(k+1) 6k^3+18k^2+18k+6+6k^2+12k+6-4k-4 6k^3+24k^2+26k+8 Entonces p(k+1) [18(1)^2-6(1)-4] + [18(2)^2-6(2)-4] + ... + [18(k)^2-6(k)-4] + [18(k+1)^2-6(k+1)-4] = 6(k)^3+6(k)^2-4(k) + [18(k+1)^2-6(k+1)-4] = 6k^3+6k^2-4k + [18(k+1)^2-6(k+1)-4] = 6k^3+6k^2-4k + [18k^2+36k+18-6(k+1)-4] = 6k^3+6k^2-4k + [18k^2+36k+18-6k-6-4] = 6k^3+6k^2-4k + 18k^2+30k+8 = 6k^3+24k^2+26k+8