Google Classroom
GeoGebraGeoGebra Classroom

Polygon Area - Polygon Net - dyn.Rotation homogene COS

Dynamic Rotation

Vertices={Vertices(1...n),Vertices(1)} Matrix-Rotation Rn() ROT={Rn(XVertices(j),YVertices(j),t_0)}j=1,n Rotation by GeoGebra commands n=6: ROTi=Rotate( Rotate( Rotate( Rotate( Rotate( Rotate(Element(Vertices, n+1), -t_0, Element(Vertices, n )), -t_0, Element(Vertices, n - 1)), -t_0, Element(Vertices, n - 2)), -t_0, Element(Vertices, n - 3)), -t_0, Element(Vertices, n - 4)), -t_0,Element(Vertices,n - 5)) ROTi=Iteration( Flatten({First(σ, Length(σ) - 2), {Rotate(Element(σ, Length(σ)), -t_0, Element(σ, Length(σ) - 1))}}), σ, {Vertices}, n) RVertices=Sequence( Iteration(Flatten({First(σ, Length(σ) - 2), {Rotate(Element(σ, Length(σ)), -t_0, Element(σ, Length(σ) - 1))}}), σ, {Take(Vertices, 1, k)}, k - 1), k, n + 1, 1, -1) Sehr schöne spezielle Lösung nach Juan Vicente Sánchez https://www.geogebra.org/m/jjdymhg5 IterationList(Rotate(Translate(σ, Vector(Element(σ, 3) - Element(σ, 2))), 360°/n - t_0, Element(σ, 3)), σ, {{M, Vertices(n), Vertices(1)}}, n - 1)