Polygon Area - Polygon Net - dyn.Rotation homogene COS
Dynamic Rotation
Vertices={Vertices(1...n),Vertices(1)}
Matrix-Rotation Rn()
ROT={Rn(XVertices(j),YVertices(j),t_0)}j=1,n
Rotation by GeoGebra commands
n=6:
ROTi=Rotate(
Rotate(
Rotate(
Rotate(
Rotate(
Rotate(Element(Vertices, n+1), -t_0, Element(Vertices, n )),
-t_0, Element(Vertices, n - 1)),
-t_0, Element(Vertices, n - 2)),
-t_0, Element(Vertices, n - 3)),
-t_0, Element(Vertices, n - 4)),
-t_0,Element(Vertices,n - 5))
ROTi=Iteration(
Flatten({First(σ, Length(σ) - 2), {Rotate(Element(σ, Length(σ)), -t_0, Element(σ, Length(σ) - 1))}}),
σ, {Vertices}, n)
RVertices=Sequence(
Iteration(Flatten({First(σ, Length(σ) - 2), {Rotate(Element(σ, Length(σ)), -t_0, Element(σ, Length(σ) - 1))}}), σ, {Take(Vertices, 1, k)}, k - 1),
k, n + 1, 1, -1)
Sehr schöne spezielle Lösung nach Juan Vicente Sánchez
https://www.geogebra.org/m/jjdymhg5
IterationList(Rotate(Translate(σ, Vector(Element(σ, 3) - Element(σ, 2))), 360°/n - t_0, Element(σ, 3)),
σ, {{M, Vertices(n), Vertices(1)}}, n - 1)