bicircular quartic 2-sheet 2
Diese Aktivität ist eine Seite des geogebra-books Leitlinien und Brennpunkte (September 2021)
Zu einer Aufteilung der Brennpunkte werden die orthogonalen hyperbolischen Kreisbüschel zur Konstruktion zugrundegelegt. Wie ist die Zuordnung der Kreise, welche sich auf der Quartik schneiden? Ein Schnittpunkt des einen Brennkreises mit der Hauptachse werde an einem zur Symmetrie gehörenden Scheitelkreis gespiegelt; der Spiegelpunkt ist ein Schnittpunkt des zugeordneten Brennkreises aus dem anderen Büschel mit der Hauptachse. Bei dieser Zuordnung werden die zu den Brennpunkten gehörenden Punktkreise den entsprechenden Leitkreisen zugeordnet! Einer der hauptachsensymmetrischen winkelhalbierenden-Kreise ist ein doppelt-berührender Kreis. Diese Zuordnung liefert auch für den Fall, dass die Brennkreise sich nicht schneiden, Kreise aus der Schar doppelt-berührender Kreise: dies sind die Mittelkreise der dann hyperbolisch liegenden Brennkreise - und natürlich liegt keine Berührung mit der Quartik vor. Diese imaginär doppelt-berührenden Kreise sind wichtig für die Konstruktion von Kreisen auf Darboux Cycliden. Die Konstruktion dieser imaginären doppelt-berührenden Kreise ist ohne ein benutzerdefiniertes Tool aufwändig, die Verwendung eines solchen Tools beeinflußt andererseits das Laufverhalten des Applets negativ!