Outline
triangle centers
In this book you can learn about some well and less known triangle centers and their coordinates
The position of remarkable points in a triangle can be defined relative to the vertices of the triangle by its barycentric coordinates. In a triangle one can identify more remarkable points, called triangle centers. On list of triangle centers you can find the best known. The American mathematician Clark Kimberling indexed more than 10 000 points, identified by their Kimberling number.
You can find this index online in the encyclopedia of triangle centers. For every point you can find its barycentric coordinates.
If you know the Kimberling number of one of this points, you can draw it directly in GeoGebra with the command TriangleCenter( Point , Point, Point, Number ) in which you can type the coordinates or the names of the vertices of a triangle and the Kimberling number of the point up to number 2999.
The point with Kimberling number n is written as X(n).
In this book you can find applets of all the triangle centers from X(1) up to X(100). This give you an impression of how it's possible to define so many triangle centers, starting just from three points, defining a triangle. Many centers are the result of mathematical operations on earlier defined centers or combinations of some of them.
An easy way is calculating e.g. the midpoint of earlier centers. Another way is to costruct triangle centers not of the referention triangle but e.g. to the orthic triangle of it. The interesting thing here is examine if this leads to interesting coordinates.
Having passed X(100) we'll make just a selection of the numerous triangle centers in the list, because of their interesting construction or their name.
In dit boek kom je meer te weten over een aantal driehoekscentra en hun coördinaten.
De positie van een merkwaardig punt in een driehoek kan je beschrijven t.o.v. de hoekpunten van deze driehoek. We spreken dan van barycentrische coördinaten. Meer over barycentrische coördinaten vind je in het boek barycentrische coördinaten. In een driehoek kan je natuurlijk heel wat merkwaardige punten aanduiden.
Deze punten noemt met driehoekscentra. Op lijst van driehoekscentra vind je een lijst van de meest bekende. De Amerikaanse wiskundige Clark Kimberling gaf meer dan 10 000 punten elk een eigen inventarisnummer: het Kimberling getal.
Je vindt deze inventaris online als de encyclopedie van driehoekscentra. Voor elk van deze merkwaardige punten vind je ook zijn barycentrische coördinaten.
Ken je het Kimberling getal van een van deze punten, dan kan je het rechtstreeks in GeoGebra bepalen met het commando Driehoekscentrum( Punt , Punt, Punt, Getal ) waarin je het de coördinaten of de namen van de hoekpunten van de driehoek invult en het Kimberling getal van het punt, tot het nummer 2999.
Het punt met Kimberling getal n noteer je ook als X(n).
In dit boek vind je applets van alle driehoekscentra van X(1) tot X(100). Zo krijg je een indruk van hoe het mogelijk is om zoveel centra te definiëren, startend vanuit enkel drie hoekpunten. Vele driehoekscentra zijn het resultaat van mathematische operaties op vroeger gedefinieerde centra of maken combinaties van enkele. Een gemakkelijke manier om nieuwe centra te vinden is het midden berekenen van bestaande centra. Een andere manier is gekende centra niet toe te passen op de referentiedriehoek, maar b.v. op de hoogtedriehoek (de driehoek gevormd door de voetpunten van de hoogtelijnen). Het boeiende hier is te onderzoeken of dit ook interessante coördinaten oplevert.
Eens X(100) gepasseerd, maken we een selectie uit de lijst, op basis van een interessante constructie of naam.
Table of Contents
X(1) - X(25)
- X(1) Incenter
- X(2) Centroid
- X(3) Circumcenter
- X(4) Orthocenter
- X(5) Nine-point center
- X(6) Lemoine point
- X(7) Gergonne point
- X(8) Nagel point
- X(9) Mittenpunkt
- X(10) Spieker center
- X(11) Feuerbach center
- X(12) Harmonic conjugate of X(11)
- X(13) Fermat point
- X(14) Second isogonic center
- X(15) and X(16) Isodynamic points
- X(17) 1st Napoleon point
- X(18) 2nd Napoleon point
- X(19) Clawson point
- X(20) De Longchamps point
- X21 Schiffler point
- X(22) Exeter point
- X(23) Far-out point
- X(24) perspector of ABC and ortic-of-orthic triangle
- X(25) homothetic center of orthic and tangential triangle
X(26) - X(54)
- X(26) Circumcenter of the tangential triangle
- X(27) Cevapoint of orthocenter and Clawson center
- X(28) Cevapoint of X(19) and X(25)
- X(29) Cevapoint of incenter X(1) and orthocenter X(4)
- X(30) Euler infinity point
- X(31) 2nd power point
- X(32) 3rd power point
- X(33) Perspector of the orthic and intangents triangles
- X(34) X(4) beth-conjugate of X(4)
- X(35) {X(1),X(3)}-harmonic conjugate of X(36)
- X(36) Inverse-in-circumcircle of incenter
- X(37) Bisectors and centroids
- X(38) {X(1),X(63)}-harmonic conjugate of X(31)
- Brocard points
- 2nd Brocard point
- X(39) Brocard midpoint
- X(40) Bevan point
- X(41) X(6)-Ceva conjugate of X(31)
- X(42) Crosspoint of incenter and symmedian point
- X(43) X(6)- conjugate of X(1)
- X(44) X(6)-line conjugate of X(1)
- X(45) X(9)-beth conjugate of X(1)
- X(46) X(4)-Ceva conjugate of X(1)
- X(47) X(110)-beth conjugate of X(34)
- X(48) Crosspoint of X(1) and X(63)
- X(49) Center of sine-triple-angle circle
- X(50) Barycentric product of X(15) and X(16)
- X(51) centroid of orthic triangle
- X(52) orthocenter of orthic triangle
- X(53) Symmedian point of orthic triangle
- X(54) Kosnita point
X(55) - X(97) isogonal conjugates
- Isogonal conjugate of a point
- X(55) Insimilicenter(circumcircle, incircle)
- X(56) Exsimilicenter(circumcircle, incircle)
- X(57) Isogonal conjugate of X(9)
- X(58) Isogonal conjugate of X(10)
- X(59) Isogonal conjugate of X(11)
- X(60) Isogonal conjugate of X(12)
- X(61) Isogonal conjugate of X(17)
- X(62) Isogonal conjugate of X(18)
- X(63) Isogonal conjugate of X(19)
- X(64) Isogonal conjugate of X(20)
- X(65) Isogonal conjugate of X(21)
- X(66) Isogonal conjugate of X(22)
- X(67) Isogonal conjugate of X(23)
- X(68) Prasolov point
- X(69) Isogonal conjugate of X(25)
- X(70) Isogonal conjugate of X(26)
- X(71) Isogonal conjugate of X(27)
- X(72) Isogonal conjugate of X(28)
- X(73) Isogonal conjugate of X(29)
- X(74) Isogonal conjugate of X(30)
- X(75) Isogonal conjugate of X(31)
- X(76) Isogonal conjugate of X(32)
- X(77) Isogonal conjugate of X(33)
- X(78) Isogonal conjugate of X(34)
- X(79) Isogonal conjugate of X(35)
- X(80) Isogonal conjugate of X(36)
- X(81) Isogonal conjugate of X(36)
- X(82) isogonal conjugate of X(38)
- X(83) Isogonal conjugate of X(39)
- X(84) Isogonal conjugate of X(40)
- X(85) Isogonal conjugate of X(41)
- X(86) Isogonal conjugate of X(42)
- X(87) Isogonal conjugate of X(43)
- X(88) Isogonal conjugate of X(44)
- X(89) Isogonal conjugate of X(45)
- X(90) Isogonal conjugate of X(46)
- X(91) Isogonal conjugate of X(47)
- X(92) Isogonal conjugate of X(48)
- X(93) Isogonal conjugate of X(49)
- X(94) Isogonal conjugate of X(50)
- X(95) Isogonal conjugate of X(51)
- X(96) Isogonal conjugate of X(52)
- X(97) Isogonal conjugate of X(53)
selection up to X(999)
- X(98) Tarry point
- X(99) Steiner point
- X(100) anticomplement of Feuerbach point
- X(110) Focus of the Kiepert parabola
- Kiepert parabola
- X(111) Parry point
- X(115) Center of Kiepert hyperbola
- Center of Kiepert hyperbola
- X(125) Center of Jerabek hyperbola
- X(175) Isoperimetric point
- X(176) Equal Detour point
- X(177) 1st mid-arc point
- X(178) 2nd mid-arc point
- Malfatti circles
- X(179) 1st Ajima-Malfatti point
- X(180) 2nd Ajima-Malfatti point
- X(181) Apollonius point
- X(182) Midpoint of Brocard diameter
- X(351) Center of Parry circle
- X(354) Weill point
- X(355) Fuhrmann center
- X(356) Morley center
- X(357) 1st Morley-Taylor-Marr center
- X(358) 2nd Morley-Taylor-Marr center
- X(364) Wabash center
- X(365) square root point
- X(366) isogonal conjugate of X(365)
- X(371) Kenmotu point
- X(372) 2nd congruent squares point
- X(373) Centroid of the pedal triangle of the centroid
- X(389) Center of the Taylor circle
- X(399) Parry reflection point
- X(476) Tixier point
- X(481) 1st Eppstein point
- X(482) 2nd Eppstein point
- X(483) Radical center of the Ajima-Malfatti circles
- X(485) Vecten point
- X(486) Inner Vecten point
- X(493) 1st Van Lamoen homothetic center
- X(495) Johnson midpoint
- X(560) 4th power point
- X(962) Longuet-Higgins point
- X(970) Center of the Apollonius circle
beyond X(1000)
- X(1066) Hastings point
- X(1116) Center of the Lester circle
- X(1122) 1st Grinberg point
- X(1127) 1st de Villiers point
- X(1128) 2nd de Villiers point
- X(1139) Outer pentagon point
- X(1140) Inner pentagon point
- X(1142) 1st Malfatti-Rabinowitz point
- X(1143) 2nd Malfatti-Rabinowitz point
- X(1153) Center of the Van Lamoen circle
- X(1155) Schröder point
- X(1158) Circumcenter of extouch triangle
- X(1160) Circumcenter of outer Grebe triangle
- X(1161) Circumcenter of inner Grebe triangle
- X(1162) Outer Grebe-orthic perspector
- X(1285) Lemoine homothetic center
- X(1312)-X(1313) 1st & 2nd Moses intersection
- X(1314)-X(1315) 3rd & 4th Moses intersection
- X(1319) Bevan-Schröder point
- X(1321) 1st Yiu squares perspector
- X(1322) 2nd Yiu squares perspector
- X(1337) 1st Wernau point
- X(1338) 2nd Wernau point
- X(1339) Nagel-Schröder point
- Brisse transform
- X(1354)-X(1367) Brisse transforms of triangle centers
- X(1371) 1st Rigby point
- X(1372) 2nd Rigby point
- X(1373) 1st Griffiths point
- X(1374) 2nd Grifiths point
- X(1375) Evans point
- X(1385) Midpoint of incenter and circumcenter
- X(1478) 1st Center of Johnson-Yff circle
- X(1479) 2nd center of Johnson-Yff circle
- X(1482) Reflection of circumcenter in incenter
- X(1483) Reflection of nine-pointscenter in incenter
- X(1487) Napoleon cevapoint
- X(1492) Columbus point
- X(1507) 1st Morley-Gibert point
- X(1508) 2nd Morley-Gibert point
- TCC Perspectors 1601- 1634
- X(1654) 1st Hatzipolakis parallelian point
- X(1655) 2nd Hatzipolakis parallelian point
- X(1658) Circumcenter of Kosnita triangle
- X(1660) 1st Grinberg midpoints perspector
- X(1661) 2nd Grinberg midpoints perspector
- X(1992) - X(2006) Orthocorrespondents
- X(2070) Inverse-in-circumcircle of X(5)
- X(2089) 3rd mid-arc-point
- X(2479)-X(2480) = Intersections(Euler line, Steinercircumellipse)
- X(2481) Intersection(Feuerbach hyperbola, Steiner circumellipse)
- X(2485) Radical center {circumcircle, 1st Lemoine circle, nine-point-circle}
- X(2967) to X(2974) MacBeath Points
- X(3333) Pohoato point
- X(3567) don Quichote point
- X(3060) Sancho Panza point
- X(143) Miguel de Cervantes Point
- X(3590) 1st Dixit point
- X(3591) 2nd Dixit point
- X(5503) Kirikami concurrent circles image of X(2)