4. Intensidad y frecuencia
Esta actividad pertenece al libro de GeoGebra Música y Matemáticas.
Intensidad y frecuencia
La presión es una medida objetiva de la intensidad del sonido, pero está lejos de representar con precisión lo que realmente se percibe. Esto se debe a que la sensibilidad del oído depende fuertemente de la frecuencia.
En general, hace falta menos intensidad para oír un sonido agudo que uno grave. Mientras que un sonido de 1.000 Hz y 3 dB ya es audible, es necesario llegar a los 50 dB para poder escuchar un tono de 50 Hz, aunque solo un uno por ciento de las personas pueden oír esta frecuencia tan baja a ese volumen.
En la siguiente imagen podemos comprobar gráficamente que el oído no se muestra igual de sensible en el rango de frecuencias. Este tipo de gráficas se conocen como curvas de audibilidad. Recogen el resultado de experimentar con un conjunto de personas su percepción de la intensidad de un sonido a medida que variamos su frecuencia.
Observemos que la escala de frecuencias (en hercios) sitúa a igual distancia las sucesivas potencias de diez. A este tipo de escalas se les llama escalas logarítmicas y se utilizan cuando la diferencia entre el valor máximo y el valor mínimo es muy grande, como en este caso.
Cada curva de la gráfica parte de la percepción de volumen que tenemos de una intensidad (por ejemplo de 40 dB) cuando la frecuencia es de 1.000 Hz. Después, variamos la frecuencia y registramos en la gráfica las variaciones necesarias de intensidad para mantener constante nuestra percepción de volumen.
La línea inferior marca el umbral de audición (por debajo de ella no se oye nada), mientras que la curva superior señala la cota a partir de la cual sentimos dolor.
La línea que marca el umbral de audición recoge los datos de los que tienen un oído muy fino. El umbral de audición de la mayoría de las personas sigue la línea azul. La línea que marca el umbral de dolor varía poco, manteniéndose alrededor de los 110 dB, salvo en las proximidades de los 4 kHz, que es la zona en donde el oído humano se muestra más sensible.
Originalmente (curvas correspondientes al diagrama anterior, calculadas por Fletcher y Munson) el umbral de audibilidad había sido definido como la mínima presión necesaria para percibir un diapasón de 1 kHz, es decir, el umbral de audibilidad era de 0 dB para 1 kHz. Sin embargo, cálculos posteriores y más precisos de las curvas mostraron que el umbral de audibilidad es de 3 dB para 1 kHz.
Esa maravillosa espiral llamada caracol
Dentro del oído interno, un tubo espiral llamado caracol (o cóclea) mantiene en su interior tres estanques llenos de líquido, separados por dos membranas (basilar y tectorial). En el que se encuentra entre estas dos membranas reside nuestro receptor de sonidos: el órgano de Corti, una formación de cuatro largas hileras con unas seis mil células ciliadas (o pilosas) cada una conectadas al nervio auditivo.
En la siguiente imagen se muestra una fotografía de una de esas 24.000 células ciliadas, nuestros fonorreceptores.
Ahora bien, ¿cómo se las arreglan estas células para discriminar las distintas frecuencias que componen el sonido de una única onda sonora compleja? ¿Cómo podemos distinguir varios instrumentos tocando a la vez, así como los distintos armónicos de cada uno?
La clave está en la membrana basilar. Esta membrana no tiene un grosor ni rigidez uniforme, de manera que vibran sólo aquellas partes de la membrana correspondientes a la frecuencia capaz de hacerlas resonar. En la figura podemos ver un esquema de la membrana basilar, desenrrollada. Las células ciliadas recogen esta información mecánica y convierten ese movimiento en impulsos eléctricos. De esta forma, las células ciliadas crean series distintas de impulsos, cuya combinación se comporta como un auténtico “espectrograma” de la onda sonora, diferenciando cada frecuencia.
Desgraciadamente, las células ciliadas no pueden regenerarse, así que una lesión en esa zona puede provocar la sordera total e irreparable. Por otra parte, la membrana basilar pierde elasticidad con la edad, por ello la sensibilidad o agudeza auditiva también merma al envejecer. Afortunadamente (no todo en el paso del tiempo van a ser inconvenientes) la experiencia de un oído entrenado permite al sujeto captar matices que para un oído inexperto resultan inexistentes.
Para hacernos una idea de la alta especialización y eficacia de nuestro sistema fonorreceptor, hagamos una comparación con otra joya de la evolución, sin duda uno de los milímetros cuadrados más valiosos del cuerpo: la fóvea, nuestra área fotorreceptora dentro de la retina. En la fóvea se distribuyen casi cien millones de células fotorreceptoras, entre bastones y conos. Es decir, hay cuatro mil células “encargadas de ver” por cada una “encargada de oír”. Sin embargo, somos capaces de percibir frecuencias sonoras de 16.000 Hz (ciclos/segundo), mientras que un avance a una velocidad de tan solo 24 cuadros por segundo nos hace percibir movimiento donde solo hay imágenes estáticas (de ahí el éxito del cine).