Google Classroom
GeoGebraClasse GeoGebra

Método de la falsa posición

Aun cuando la bisección es una técnica perfectamente válida para determinar raíces, su método de aproximación por "fuerza bruta" es relativamente ineficiente. La falsa posición es una alternativa basada en una visualización gráfica. Un inconveniente del método de bisección es que al dividir el intervalo de x1 a xu en mitades iguales, no se toman en cuenta las magnitudes de f(x1) y f(xu). Por ejemplo, si f(x1) está mucho más cercana a cero que f(xu), es lógico que la raíz se encuentre más cerca de x1 que de xu. Un método alternativo que aprovecha esta visualización gráfica consiste en unir f(x1) y f(xu) con una línea recta. La intersección de esta línea con el eje de las x representa un mejor aproximación de la raíz. El hecho de que se reemplace la curva por una línea recta de una "falsa posición" de la raíz; de aquí el nombre de método de la falsa posición.