Compito sulla retta
Problema 1
Disegna i grafici delle rette
, , ,
Grafico delle quattro rette
Il poligono è un parallelogramma poichè i lati sono a coppie paralleli. E' sufficiente ricavare i coefficienti angolari delle rette r1 - r3 (m= 3/4) e r2 - r4 (m=-2).
Calcolando le lunghezze dei segmenti AD (5) e DC (2,24) ottengo il perimetro del parallelogramma ABCD, pari a 2AD+2DC= 14,47 =
Calcolando la distanza punto retta tra A e r3 (2,2) ottengo l'altezza del parallelogramma, nota la base AD (5), posso calcolarne l'area, pari a 11.
Quindi mi ricavo le equazioni delle due diagonali da( - x+5y=13) e db( 5x-3y=12 ) e del loro punto di intersezione M (4,5, 3,5), che corrisponde al punto medio dei due segmenti AC e
BD .
La diagonale minore del poligono, AC, divide lo stesso in due triangoli ABC e ADC.
I baricentri dei due triangoli si ricavano applicando la formula del baricentro . Quindi G(ABC)= e G(ADC)=
Problema 2
Sono date le due rette di equazione:
,
Ricavo l'equazione del fascio generato da r1: y-5x+8=0 e r2: 3x - 5y+4=0
y-5 x+8+k (3 x-5 y+4)=0
E' un fascio proprio di coordinate C (2,2)
Sostituendo le coordinate del punto A in x e y mi ricavo il valore di k che risolve l'equazione, e quindi l'equazione della retta r3 del fascio passante per A è r3: x - 4y + 6 = 0.
Il suo coefficiente angolare m è 1/4. Quindi 18m vale 18/4 = 9/2, che sarà il coefficiente angolare della retta r4, sempre appartenente al fascio. La sua equazione sarà quindi quella di una retta passante per C con m=9/2 ... e quindi y-2=9/2(x-2) che diventa r4: -9x + 2y + 14 =0.
L'asse del segmento AC ha equazione -4x - y +37/2 =0 (ricavata come retta perpendicolare ad AC, passante per il suo punto medio).
L'intersezione H tra r4 e l'asse di AC sarà quindi H(3, 13/2).
Il coefficiente angolare del segmento AH sarà quindi .
La retta r5 del fascio parallela ad AH sarà quindi la retta passante per C(2,2) con m= - 7/6 che avrà equazione
6y + 7x - 26 = 0.