Euler's totient function
Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n.
Note: It works for n < 1015-1
This example uses JavaScript but it seems to be easier using just GGB script:
https://www.geogebra.org/m/mvxnxamm
1. Global JavaScript
function ggbOnInit() {}
// Euler's Totient Function
// https://en.wikipedia.org/wiki/Euler%27s_totient_function
// using Euler's product formula
function phi(n) {
    // Initialize
    // result as n
    var result = n;
    // Consider all prime
    // factors of n and subtract
    // their multiples from result
    for (var p = 2; p * p <= n; ++p) {
        // Check if p is
        // a prime factor.
        if (n % p == 0) {
            // If yes, then
            // update n and result
            while (n % p == 0)
                n = parseInt(n / p);
            result -= parseInt(result / p);
        }
    }
    // If n has a prime factor
    // greater than sqrt(n)
    // (There can be at-most
    // one such prime factor)
    if (n > 1)
        result -= parseInt(result / n);
    return result;
}
// This code is contributed
// by _saurabh_jaiswal
2. Basic Setup
n = 123456
phi = ?
Inp = InputBox(n)
SetCaption(Inp, "n = ")
text = "\phi(n) =" + phi
3. Create button named "Calculate" with JavaScript
var n = ggbApplet.getValue('n');
if ( n <= 0 )
  ggbAppletevalCommand("SetValue(phi, ?)");
else if ( n === 1)
ggbApplet.setValue("phi", 1);
else ggbApplet.setValue("phi", phi(n));
4. Finally, add script in "n" on Update tab
RunClickScript( Calculate )