Dimensions of the Hyper-vector a.k.a. the Binomial Polyhedron
Can establish a successful vector in any hyper dimensional leap. This object is used to navigate theoretical space, when a vector is not present. Use this to determine a vector. This object can help us mathematically orient ourselves in any theoretical space. The dimensions of this shape can lead to many discoveries. For example, Emiliano Alohi Espinoza used this "Binomial Polyhedron" to discover the hyper dimension and can successfully explain how to use it to navigate through theoretical space, time, location, dimension, sub dimension and hyper dimensional continuum. We most likely live in dimension 5. In both the 7th hyper dimensional plane, and sub-hyperdimension.
Dimensions of the Binomial Polyhedron...
Example: I used the ""#DJI" Average" (Stock Market) as a practical application for the creation of the "Binomial Polyhedron".
X2 = 0.16657415116319
Y2 = 919.9297245349
ΔX = 0.16657415116319
ΔY = 4.9972245348958
θ = 88.090847567004°
Equation of the line:
y = 30x + 914.9325
When x=0, y = 914.9325
When y=0, x = -30.49775
OR
X2 = -0.16657415116319
Y2 = 909.9352754651
ΔX = -0.16657415116319
ΔY = -4.9972245348958
θ = 268.090847567°
Equation of the line:
y = 30x + 914.9325
When x=0, y = 914.9325
When y=0, x = -30.49775