Module 3: Lines and Circles
We begin by creating a point P, which is attached to a slider a.
Question 1:
Notice that point P is defined at (2;a). What does the 2 represent in the point P? What does the a represent?
Now, we create a circle using C=Circle[P,2].
Question 2:
What can we say about this circle?
We will now create a line segment F=segment((4,0),(-4,0)) to intersect our circle.
Question 3:
In how many places does the line segment intersect the circle?
We can create points where the line and the circle intersect.
- A=Intersect(C,F,1)
- B=Intersect(C,F,2)
Question 4:
As the center of the circle changes (by sliding a), what do you notice about the intersection points?
Question 5:
Make a conjecture about how you know which intersection point is moving and which remains at the origin.
Now, let's test your conjecture by creating a different line segment and its intersection points with the circle.
Question 6:
Does your conjecture change?