Google Classroom
GeoGebraGeoGebra Classroom

Erkunden: Vielfache und Summen konv. Folgen

Rechenregeln für Grenzwerte

Gegeben seien konvergente Folgen mit Grenzwert und mit Grenzwert . Dann gelten folgende Aussagen: (i) Für jede Konstante ist die Folge konvergent und es gilt . (ii) Die Folge ist konvergent und es gilt . (iii) Die Folge ist konvergent und es gilt . (iv) Falls alle sind sowie ist, so ist die Folge konvergent und es gilt .

Aufgabenstellung

Die ersten zwei Rechenregeln für Grenzwerte sind in den folgenden Applets für ausgewählte Beispiele visualisiert. Mit den Applets kannst du erproben, wie sich die Folgen verhalten und mehrere Parameter selbst ändern. Versuche nachzuvollziehen, was die Änderungen der Parameter bewirken und wie der Grenzwert der zu untersuchenden Folge bestimmt wird.

(i) Vielfache einer konvergenten Folge

(ii) Summe zweier konvergenter Folgen

Tipp zum Applet

Du hast einen besseren Überblick über die Folgen, wenn du immer nur ein Kontrollkästchen aktivierst.
Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie http://creativecommons.org/licenses/by-sa/4.0/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.
Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie http://creativecommons.org/licenses/by-sa/4.0/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.