2. El sonido puede verse

Esta actividad pertenece al libro de GeoGebra Música y Matemáticas. Olas superpuestas En el artículo "Análisis Armónico"comentábamos el problema de la cuerda vibrante: Al pulsar la cuerda se produce una onda transversal viajera, como una ola, que recorre la cuerda hasta los extremos, con una cierta amplitud (separación máxima respecto del punto de reposo). Allí, incapaz de continuar su propagación, se refleja. Esto ocasiona que dos ondas reflejadas en los extremos viajen una contra otra hasta superponerse en la cuerda. La suma de estas dos ondas reflejadas es una onda longitudinal llamada onda estacionaria. Este nombre se debe a que, al superponerse, las ondas reflejadas parecen dejar de propagarse, convirtiéndose en una oscilación de la cuerda. Esta oscilación es la que se propagará al aire. Cada onda reflejada habrá recorrido dos veces la longitud de la cuerda hasta encontrarse de nuevo en el extremo de partida. Así que la longitud de la onda estacionaria es el doble de la longitud de la cuerda. Ahora bien, al superponerse las dos ondas transversales para formar la onda estacionaria, podrán aparecer puntos (vientres) en donde las dos ondas coincidan en fase, así que la amplitud será el doble. También pueden aparecer puntos (nodos) en donde las ondas se encuentren desfasadas 180º, así que en ellos la amplitud será nula (no se mueven). Estos nodos actúan como extremos fijos de partes de la cuerda, por lo que la vibración de estas partes emitirá un sonido más agudo (con mayor frecuencia). Si ahora añadimos una dimensión más, pasando de la linealidad de una cuerda a las dos dimensiones de la superficie de una placa, un platillo o una membrana tirante, obtenemos el mismo fenómeno de superposición de ondas transversales. Ahora, sin embargo, los nodos (puntos donde una onda y su reflejo se superponen anulándose) no son puntos aislados sino que forman líneas nodales en donde la placa o membrana no vibra. El sonido puede verse Hacia 1787, el alemán Chladni, considerado uno de los pioneros de la física acústica, estudia por primera vez estas líneas nodales.
Ernst Chladni (1756 - 1827)
Ernst Chladni (1756 - 1827)
Con estudios de Derecho, músico aficionado y un entusiasta de la ciencia, Chladni encuentra la ley que lleva su nombre, una relación sencilla entre los modos propios de vibración de una placa. Para ello, se valió de placas sujetas por el centro sobre las que espolvoreaba arena fina. Al hacerlas vibrar con un arco de violín, los patrones de las líneas nodales se hacen visibles, pues sobre esas líneas se acumula la arena rebotada de las otras zonas vibrantes.
Image
Image
Image
De esta forma, cada frecuencia natural de vibración de la placa corresponde con un patrón determinado.