Google Classroom
GeoGebraGeoGebra Classroom

Aperiodic Monotile - Ein-Stein, für aperiodische Muster

Isometric Grid of Einstein X (aperiodic monotile)

An aperiodic monotile, sometimes called an "einstein", is a shape that tiles the plane, but never periodically. Einstein P0, P1, ... P13 - P0 move point, P1 rotation point SuperTiles SuperTileb = polyA', polyB', polyC' polyD' Connect monotile to SuperTiles A'0 connect B'0, (AB'0) , A'0 connect C'0, A'0 connect D'0 Grid: Isometric, n=13, L1...L13 Master Kachel Li : Flip at Segment-Axis, M': Connect C_{0}, base M'_{0} - Move C_{0} by M'_{0} Working with Isometric grid I - Isometric Grid, X EinStein I=Surface(O + u (cos(30°), sin(30°)) + v (cos(-30°), sin(-30°)), u, -10, 10, v, -10, 10) X={O, I(1,-1), I(1,-1.5), I(2,-2), I(2.5,-3), I(2,-3), I(1.5,-2.5), I(1,-3), I(0,-2.5), I(0,-2), I(-1/2,-1.5), I(0,-1), I(-1/2, 0)} J - Isometric Grid rotate α α=0..360° ROT={{cos(α), sin(α)}, {-sin(α), cos(α)}} J=Surface((ROT (O + u (cos(30°), sin(30°)) + v (cos(-30°), sin(-30°)) - O)) + O, u, -10, 10, v, -10, 10) Y={O, J(1,-1), J(1,-1.5), J(2,-2), J(2.5,-3), J(2,-3), J(1.5,-2.5), J(1,-3), J(0,-2.5), J(0,-2), J(-1/2,-1.5), J(0,-1), J(-1/2, 0)} Isometric Grid XFig - Ein-Stein XFig= {(0, 0), (1,-1), (1,-1.5), (2,-2), (2.5,-3), (2,-3), (1.5,-2.5), (1,-3), (0,-2.5), (0,-2), (-0.5,-1.5), (0,-1), (-0.5, 0)} A anchor point: Fig_A=Polygon(A + Zip(I(pp), pp, XFig)) B anchor point: Fig_B=Polygon(B + Rotate(Zip(I(pp), pp, XFig), 30°)) Gruppierung von Kacheln in Clustern Zusätzlich zu Vier-Kachel-Clustern, die aus einem Dreieck EinStein und seiner Drei-EinStein-Hülle, ein Sechseck, bestehen, identifizieren wir parallelogrammförmige Cluster, die aus Kachelpaaren bestehen. Die Parallelogramme gibt es in zwei Varianten: Die eine trennt zwei benachbarte Cluster und die andere verbindet sich mit zwei gedrehten Kopien zu einer dreiarmigen Propellerform, die Fylfot genannt wird. A grouping of tiles into clusters in the example patch. In addition to four-tile clusters consisting of a reflected hat and its three-hat shell, we identify clusters consisting of a single tile, and parallelogram-shaped clusters consisting of pairs of tiles. The parallelograms come in two varieties: one separates two nearby shells, and the other joins up with two rotated copies to make a three-armed propeller shape called a fylfot.   Die Kachel zur Unendlichkeit Rätsel Einstein-Kachel gelöst An aperiodic monotile_{David Smith} Two algorithms for randomly generating aperiodic tilings