Google Classroom
GeoGebraGeoGebra Classroom

Baricentro

Baricentro

O baricentro de um triângulo é o ponto de encontro das medianas do triângulo. A mediana é o segmento de reta que une um vértice ao ponto médio do lado oposto.

Baricentro do triângulo

  • Selecione a ferramenta POLÍGONO (Janela 5) e clique em três lugares distintos para formar um triângulo. Para fechar o triângulo clique novamente no primeiro ponto. Naturalmente que os pontos não podem estar alinhados. Um triângulo com vértices nos pontos A, B e C será criado como o mostrado na figura seguinte. 
  • Ative a ferramenta PONTO MÉDIO OU CENTRO (Janela 2) e clique sobre o lado c. Um ponto D será criado. 
  • Ative a ferramenta SEGMENTO DEFINIDO POR DOIS PONTOS (Janela 3), clique no ponto C e posteriormente no ponto D. Um segmento d será criado. Esse segmento criado é chamado de mediana. 
  • Ative a ferramenta PONTO MÉDIO OU CENTRO (Janela 2),  novamente e clique sobre o lado a. Um ponto E será criado. 
  • Ative a ferramenta SEGMENTO DEFINIDO POR DOIS PONTOS (Janela 3), clique no ponto A e posteriormente no ponto E. 
  • Ative a ferramenta INTERSEÇÃO DE DOIS OBJETOS (Janela 2), clique sobre o segmento d e, posteriormente, sobre o segmento e. Um ponto F será criado. A próxima mediana também passará por F? Para observar, ative a ferramenta PONTO MÉDIO OU CENTRO (Janela 2) novamente e clique sobre o lado b. Um ponto G será criado. 
  • Ative a ferramenta SEGMENTO DEFINIDO POR DOIS PONTOS (Janela 3), clique no ponto B e, posteriormente, no ponto G. Esse segmento criado é uma outra mediana. Se tudo correu bem, estará com um desenho semelhante ao que está a seguir. O ponto F é o baricentro. Vamos modificar o nome do ponto F para baricentro. Para tal, clique com o botão do lado direito do mouse sobre o ponto F e selecione a opção RENOMEAR. Na nova janela que aparecerá, escreva baricentro e clique em OK.

Propriedade

As três medianas de um triângulo interceptam-se num mesmo ponto que divide cada mediana em duas partes tais que a parte que contém o vértice é o dobro da outra.

Demonstração

Aprenda também a construir o baricentro de um triângulo manualmente