Google Classroom
GeoGebraGeoGebra Classroom

Nex21 (4,1) [1/3] - Solve

Source Code

#------------------------------------------------------ # Construct red and green bands (given red) # The center of the green band is halfway # along the edge of the icosihedron. #------------------------------------------------------ O = (0,0,0) sph = Sphere(O,1) Rcenter = (1,0,0) red = 10.61369513431076° γ = atand(tan(red) / cos(54°)) R01 = (cos(γ), 0, sin(γ)) R03 = Rotate(R01, -72°, xAxis) axisR = Line(O, Vector(Vector(O, R01) ⊗ Vector(O, R03))) R02 = Rotate(R01, red, axisR) R04 = Rotate(R01, 3*red, axisR) G01 = Rotate(R02, -72°, xAxis) G02 = R04 green = Angle(G01, O, G02) axisG = Line(O, Vector(Vector(O, G01) ⊗ Vector(O, G02))) Gmid = Rotate(G01, 1.5*green, axisG) G04 = Rotate(G01, 3*green, axisG) Rarc = CircularArc(O, R01, R04, Plane(O, R01, R04)) Rarc5= Zip(Rotate(Rarc, k * 72°, xAxis), k, 0..4) Garc = CircularArc(O, G01, G04, Plane(O, G01, G04)) # α is 2*distance Rcenter Gmid #---------------------------------- α = 2*Angle(Rcenter, O, Gmid) # β is edge of the icosihedron #---------------------------------- β = acosd(sqrt(1/5)) # If red is correct, # the difference should be 0 #---------------------------------- δ = α - β #------------------------------------------------------ # Compare [1/3] with [2/3] #------------------------------------------------------ red23 = 14.495596141331275° green23 = 16.289240170644682° factRed = red / red23 factGreen = green / green23
Image

TaffGoch (12 dec 2016)

The rotegrity "straps" (of the same color) are the same length/width (but bent to different radii, of course, producing different-size spheres.) In 3D-modeling, I refer to the two different size rotegrities as "greater" and "lesser", to keep my model files organized. Technically, they are, both, Class-II, 2v rotegrities. The ratio of sphere radii is about 1:¾

Thijs (18 jun 2023)

The rotegrity "straps" (of the same color) are NOT the same length/width red [1/3] : red [2/3] = 0.732201 green [1/3] : green[2/3] = 0.762272