Centros de los triángulos equiláteros inscritos en una cónica
¿Cómo inscribir un triángulo en una curva plana?
Fijado un vértice P en la curva, calculamos la intersección de la curva con la curva girada π/3 (ó -π/3)
- Si un triángulo equilátero PQR tiene los vértices en la curva, como sus tres ángulos miden π/3, R es el resultado de girar π/3 (ó -π/3) el punto Q con centro en P. Así que Q está también en la curva girada π/3 (ó -π/3). Q está en la intersección de las dos curvas
- Si un punto Q de la curva está en la intersección, también es el resultado de girar un punto R. Así que el triángulo PQR es equilátero porque es isósceles (al girar con centro en P, la distancia a Q y R es la misma) y el ángulo compredido es π/3 (por tanto los otros dos ángulos, que son iguales, también miden π/3).
Cuando la curva es una cónica, para cada punto P habrá que calcular la intersección de esa cónica con la que resulta al girarla π/3. En general, en la intersección de dos cónicas hay entre 0 y 4 puntos.
Como uno de los puntos es el centro de rotación P, puede haber hasta otros 3 puntos, y por tanto hasta tres triángulos equiláteros.
El lugar geométrico resulta una cónica del mismo tipo, pero distintos parámetros.
Para una curva cualquiera, el lugar geométrico puede ser cualquier tipo de figura.