Kardioide

Die Kardioide oder Herzkurve (von griechisch καρδία ‚Herz‘) ist eine ebene Kurve, genauer gesagt eine algebraische Kurve 4. Ordnung, die ihren Namen wegen ihrer Form erhielt. Lässt man auf der Außenseite eines gegebenen festen Kreises mit Mittelpunkt M und Radius  einen weiteren Kreis mit dem gleichen Radius abrollen und betrachtet man dabei einen bestimmten Punkt P auf dem abrollenden Kreis, so beschreibt P eine Kardioide. Damit erweist sich die Kardioide als spezielle Epizykloide.
[size=150]Kardioide erzeugt durch einen rollenden Kreis auf einem Kreis mit demselben Radius.[/size]
Kardioide erzeugt durch einen rollenden Kreis auf einem Kreis mit demselben Radius.

Gleichungen von Kardioide

Gleichungen von Kardioide

Kardioide als inverse Kurve einer Parabel

  • Die Kardioide ist das Bild einer Parabel unter einer Kreisspiegelung (Inversion), bei der das Inversionszentrum im Brennpunkt der Parabel liegt (s. Bild).
Im Beispiel des Bildes haben die Erzeugerkreise den Radius . Die gespiegelte Parabel genügt in x-y-Koordinaten der Gleichung .
[size=150]Die Kardioide entsteht durch Spiegelung einer Parabel am Einheitskreis (gestrichelt)[/size]
Die Kardioide entsteht durch Spiegelung einer Parabel am Einheitskreis (gestrichelt)

Kardioide in Optik und Akustik

  • Die Lichterscheinung (Kaustik) in einer Kaffeetasse, die von Licht aus einer am Tassenrand platzierten Lichtquelle getroffen wird, ist eine Kardioide. Die Kaustik, die von parallel eintreffendem Licht erzeugt wird, wird allerdings durch eine andere Kurve (Nephroide) beschrieben; in anderen Fällen entsteht eine Mischform.
In der Tontechnik wird das Polardiagramm der Richtcharakteristik einer Kardioide mit Niere bezeichnet, auch wenn es eine Herzkurve darstellt.