Zykloide
Definition
Die Zykloide ist die Kurve, die von einem festen Punkt auf einem
Kreis gezeichnet wird, der auf einer Geraden abrollt
Beispiel
- Gewöhnliche Zykloiden werden von Punkten auf der Lauffläche eines Autoreifens oder sonstiger Laufräder (Eisenbahn, Seilbahn) und von den Punkten längs der Lauffläche rollender Murmeln beschrieben.
- Verkürzte Zykloiden werden von Punkten mit einem Radius kleiner dem der Lauffläche beschrieben, etwa Punkte von Fahrradspeichen oder die Ansatzpunkte von Pleuelstangenbei einer Dampflokomotive.
- Verlängerte Zykloiden werden von Punkten mit einem Radius größer dem der Lauffläche beschrieben; im Fall von Eisenbahnen wären das alle Punkte des Spurkranzes.
Mathematische Darstellung der Zykloiden
Eigenschaften von Zykloiden
Eine gewöhnliche Zykloide entsteht, wenn ein Kreis auf einer Geraden abrollt. Anschaulich gesprochen bewegt sich ein Punkt auf einem Reifen eines fahrenden Fahrrades (näherungsweise das Ventil) auf einer gewöhnlichen Zykloide. Die Katakaustik, die Evolute und die Evolvente der Zykloide sind selbst wieder Zykloiden. Die Mittelpunkte der Krümmungskreise einer Zykloiden liegen vollständig auf ihrer Evolute.
Eine verkürzte Zykloide entsteht, wenn die Bahn eines Punktes im Inneren des Kreises betrachtet wird, anschaulich etwa der Seitenstrahler beim Fahrrad. Eine verlängerte Zykloide setzt dagegen voraus, dass ein Punkt außerhalb des abrollenden Kreises sich mit dem Kreis mitbewegt. Diese beiden Kurven heißen auch Trochoiden (altgriechisch τροχός trochos»Rad«).