Base i coordenades d'un vector respecte d'una base
Si tenim dos vectors qualssevol i que tinguin direccions diferents, podem fer combinacions lineals amb ells i aconseguir qualsevol altre vector del pla. Per aquest motiu, aquests dos vectors es poden considerar base i ho expressam així: B(,).
Als escalars a i b se'ls anomena coordenades de respecte de la base B. Podem expressar el vector com:
=(a,b)
ó
(a,b) (sense el signe igual)
Si els vectors de la base són perpendiculars entre si, es diu que formen una base ortogonal. Si, a més a més, aquests vectors tenen mòdul 1, es diu que formen una base ortonormal.
Modifica els vectors base u i v (en color verd) i després modifica el vector w (en lila). Finalment, troba els valors a i b (amb la barra lliscant) que generarien el vector w. Aquests valors a i b són les coordenades de w respecte de u i v
Feu el següent :
- Definiu els vectors de la base u i v
- Definiu el vector w
- Moveu els paràmetres a i b fins aconseguir tenir w com a diagonal del paral·lelogram.
- Comproveu que w és combinació lineal d' u i de v
- Obriu els eixos i interpreteu el resultat